
Pipeline Effectiveness in the Sketch Engine

Matúš Kostka

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00, Brno, Czech Republic

xkostka4@fi.muni.cz

Abstract. This paper focuses on measuring the effectiveness of the most
used language pipelines (48 pipelines) in Sketch Engine for potential fu-
ture efficiency improvements. This paper will describe the tool for parallel
measuring made for this task, analyze the problem before measuring, ana-
lyze and represent results frommeasured data, and endwith a conclusion.

Keywords: Pipelines, Tokens, Sketch Engine, Effectiveness, Language

1 Introduction

Sketch Engine supports approximately 100 languages which, of course, follows
a similar number of pipelines [1]. Pipeline stands for a group of tools for text
processing, like normalization, tokenization/segmentation, lemmatization and
part-of-speech tagger, in one executable file. It is necessary for corpus creation.
Every language has at least one pipeline. Because Sketch Engine uses several
types of pipelines, most of them are by the Sketch Engine team. However, some
came from different creators, meaning pipelines can differ in features, way of
functioning, efficiency, CPU, and RAM consumption. Nevertheless, the amount
of attention paid to the pipeline often depends on the size and usage of language,
the pipeline was created for1.

The effectiveness of pipelines is crucial for processing vast amounts of data
and also for user satisfaction while creating their own corpora with Sketch
Engine. So this paper focuses on the measurement of pipeline effectiveness in
Sketch Engine to create an overview of the actual state of pipelines for potential
future improvements. The measured parameters are total execution time, CPU
usage and memory usage. The paper will briefly describe the problem of the
measurements, the tool created for this task, selected pipelines, analyze of
measured data and ends with a conclusion.

2 Closer description

The goal is to create a universal tool and statistics for better orientation in
the efficiency of the pipelines in Sketch Engine. The measured parameters are
1 For a full list of pipelines features, visit https://www.sketchengine.eu/
corpora-and-languages.

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2022, pp. 123–130, 2022. © Tribun EU 2022



124 M. Kostka

execution time,CPU usage andmemory usage (maximum resident set size). It
was realized on files of a specified amount of tokens, in this case, 10,000; 100,000
and 1,000,000 tokens for every file. These numbers were selected because Sketch
Engine enables users to create their own corpora but with a default upper limit
of 1 million tokens [1]. Measurement by the number of tokens and not by the
file size was decided because each language has a different length of words.
This means if the measurement were done by the file size, the number of tokens
would not be the same for every language. The specified tokens files are made
chiefly from data downloaded fromWikipedia for individual languages in 2020
and 2021 by a web crawler SpiderLing [2]. The measurement took place at one
of the servers of Lexical Computing CZ, with 32 cores and 256 GB of ram. The
result can be influenced by the background processes, the pipeline version, and
the content of the used files on the server.

2.1 The tool

The script for this task is written in bash and can create a file of a given
amount of tokens, measure execution time, CPU and RAM usage, and export
measured data in CVS format for future processing. The script is based onUNIX
command /usr/bin/time, which measures already mentioned parameters [8].
Creating a file with the requested amount of tokens is quite a time-consuming
process because the data are first decompressed from gunzip format, tokenized,
then the tokens are counted for a specified amount and turned back via
vert2plain function to prevertical form. The script can work in 2modes: creating
a temporary file or with an already created file, to save time while repeating the
measurement more time. It is recommended to run the script via makefile with
-j, which will run several jobs simultaneously. The only limitation here is only
the number of CPUs and cores the machine offers.

2.2 Used pipelines

Totally 48 pipelines are measured. Some languages are measured more times
like Italian, French, Greek because they use more versions of pipelines, but
on the other side traditional and simplified Chinese uses the same pipeline.
These 48 pipelines are the most used pipelines in Sketch Engine and that is
the reason why they were selected. There are several aspects causing that these
pipelines can differ in results like the number of supporting features, way of
implementation, type of alphabet, and unique language characteristics. When
the pipeline support all features (mostly tagging and lemming) huge language
models are loaded in the initialization phase, which can be time, CPU and RAM
consuming. Model loading is crucial in pipelines for languages with a unique
alphabet, like Chinese, Japanese, Arabian, Bulgarian and for languages similar
to these. Bear in mind that quicker pipelines in the result can support fewer. In
table 1, See Table 1, can be seen pipeline features with quick description.
Notes to Table 1, See Table 1:



Pipeline Effectiveness in the Sketch Engine 125

Table 1: Pipeline composition
Feature name Description
Uninorm Normalization of text convert the content into

NFKC normalization form. [5]
Unitok Tokenisation of a text is the process of splitting

the text into units suitable for further computa-
tional processing. It is an important data prepa-
ration step allowing to performmore advanced
tasks. [4]

Lemmatizer Lemmatization is a process of assigning a
lemma to each word form in a corpus. [6]

Treetagger Assigning special labels to each token in the
corpus to indicate part of speech, grammatical
categories. [7]

Note that features can differ for each pipeline. Like tokenization for Chinese,
Japanese is called segmentation.

3 Analyze

It is evident that the amount of resources used is directly proportional to the
number of tokens. Closer result from measurement with a million tokens can
be seen in [1, 2, 3].

Table 2: Stats 10,000 tokens
Min value Max value Average Median

Execution time (sec) 2.47 762.7 78.27 54.46
CPU usage (%) 0 100 26 18
RAM usage (GB) 0.007 2.326 0.252 0.141

Notes to Table 2, See Table 2:
In the row of execution time, the minimum value was reached by Hebrew
pipeline and the maximum value by Tagalog pipeline. In the CPU usage row,
the minimum was also reached by Hebrew pipeline but the maximum by
Japanese pipeline. And from the RAM point of view, the minimum of it was
used by Thai pipeline and the maximum again by Tagalog pipeline.
Notes to Table 3, See Table 3:
The fastest execution time had universal pipeline, a default pipeline for lan-
guages without their pipeline. It supports just normalization and tokenization.
The slowest was again Tagalog pipeline. From the CPU point of view, the
least CPU resources were used by Hebrew pipeline and the most by Japanese
pipeline. More than 100% of CPU usage is possible because the program is



126 M. Kostka

Table 3: Stats 100,000 tokens
Min value Max value Average Median

Execution time (sec) 4.21 3300.14 271.02 108.76
CPU usage (%) 0 127 40 38
RAM usage (GB) 0.008 5.443 0.388 0.187

run on more cores (multiprocessing), 1 core == 100%. The maximum pos-
sible is 3200% because the server on which the measurement was realized
have 32 cores. For more information, See https://en.wikipedia.org/wiki/
Multiprocessing. And from the RAM point of view, the minimum of it was
used by Thai pipeline and the maximum again by Tagalog pipeline.

Table 4: Stats 1,000,000 tokens
Min value Max value Average Median

Execution time (sec) 23.7 8109.08 1020.49 395.78
CPU usage (%) 0 222 75 77
RAM usage (GB) 0.008 5.629 0.733 0.209

Notes to Table 4, See Table 4:
The results are again similar as the previous two measurements and the fastest
execution time was reached by Universal pipeline and the slowest by Hebrew
pipeline (different pipeline as previous). The minimum of CPU resources was
used by Thai pipeline and the most by Italian pipeline. And the RAM usage,
minimum of it, was used by Thai pipeline and the most by Japanese pipeline.

4 Conclusions

The Tagalog pipeline has been the worst from the analysis of all three types
of measurements. Even at the 1 million tokens measurement, it did not finish
at all, the pipeline was repeatedly restarting itself. Also, the low usage of
RAMandCPU byThai pipeline (thai_sw1) andHebrew pipeline (yap_he_v1)
is questionable and the most probably not alright, but all repetitions of the
measurements show similar values.

It is clear that pipelines for languages with different alphabets as Latin
are usually slower. Also, the fact that 46% of pipelines are slower than 10
minutes is alarming and requires some attention [1]. The RAM usage is all
right, only two pipelines use more than 5 GB, and those are tagalog_sw1 and
mecab_unidic_comainu_jpn [2]. Moreover, from the CPU point of view, its
evident that only 12% of pipelines are multithreaded [3].

One Positive fact is that all pipelines are in a linear relationship with the
number of tokens. Hence, it is possible to calculate linear regression for quicker



Pipeline Effectiveness in the Sketch Engine 127

Fig. 1: Execution time for measured pipelines



128 M. Kostka

Fig. 2: RAM usage for measured pipelines



Pipeline Effectiveness in the Sketch Engine 129

Fig. 3: CPU usage for measured pipelines



130 M. Kostka

execution time estimation for a given token amount. However, it requires more
measurements with a different number of tokens for a more precise result.

5 Possible future improvements and goals

The good idea is to realizemoremeasurementswith different amounts of tokens
to have enoughdata to count linear regressionwith an acceptable result. Because
now, there are just three measurements per pipeline from which the linear
regression can be calculated but the error rate is quite high. The goal is to have
at least ten measurements of different token numbers per pipeline. The next
goal could be dividing pipelines according to supported features andmeasuring
pipelines with similar features together because now it is highly probable that
the fastest pipeline supports fewer features than the slower ones. And as the last
goal and probably the most useful would be to measure the actual pipeline for
all languages accessible in Sketch Engine.

Acknowledgments This publication has been fully supported by the Lexical
Computing CZ s.r.o.

References

1. Kilgarriff, A., Baisa, V., Bušta, J., Jakubíček, M., Kovář, V., Michelfeit, J., Rychlý, P.,
Suchomel, V.: The sketch Engine: ten years on. Lexicography 1(1), 17-19; 26-29 (2014)

2. Suchomel, V., Pomikálek, J.: Efficient web crawling for large text corpora. In: Proceed-
ings of the seventh Web as Corpus Workshop (WAC7). (2012) 39-43

3. Languages in Sketch Engine, https://www.sketchengine.eu/
corpora-and-languages/. Last accessed 16 Nov 2022

4. Michelfeit, J., Pomikálek, J., Suchomel, V.: Text Tokenisation Using unitok. (2014)
5. Unicode Normalization Forms, https://unicode.org/reports/tr15/. Last accesed

20 Nov 2022
6. Lemmatization, https://www.sketchengine.eu/my_keywords/lemmatization/.

Last accesed 20 Nov 2022
7. POS tags, https://www.sketchengine.eu/blog/pos-tags/. Last accesed 20 Nov

2022
8. Time(1)— Linux manual page, https://man7.org/linux/man-pages/man1/time.1.

html. Last accesed 20 Nov 2022


