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Using corpora [and the web] as data sources for dictionaries 

 

Adam Kilgarriff 

 

 

1 Introduction 

 

There are three ways to write a dictionary 

 Copy 

 Introspect 

 Look at data. 

 

The first has its place.  Making checks against other dictionaries is a not-to-be-

overlooked step in the lexicographic process.  But if the dictionary is to be an original 

work, it never has more than a secondary role. 

 

Introspection is central.  The lexicographer always needs to ask themself, “what do I 

know about this word?” “how do I interpret this evidence?” “does that make sense?”  But 

by itself, intuition does a limited and partial job.  Asked “what is there to say about the 

verb remember?” we might come up with some facts about meaning, grammar and 

collocation – but there are many more we will miss, and some of our ideas may be wrong. 

 

That leaves data, and for lexicography, the relevant kind of data is a large collection of 

text: a corpus.   A corpus is just that: a collection of data – text and speech - when viewed 

from the perspective of language research. 

 

A corpus supports many aspects of dictionary creation: 

 

 headword list development 

 for writing individual entries: 

 discovering the word senses and other lexical units (fixed phrases, 

compounds, etc.) 

 identifying the salient features of each of these lexical units 

 their syntactic behaviour 

 the collocations they participate in 

 any preferences they have for particular text-types or domains  

 providing examples 

 providing translations. 

 

The chapter describes how a corpus can support each of these parts. 

 

First, two apologies.  First, I am a native speaker of English who has worked mostly on 

monolingual English dictionaries. Examples, and the experiences which inform the 

chapter, will largely be from English.  Second, to illustrate and demonstrate how corpora 

support lexicography, one cannot go far without referring to the piece of software that is 
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the intermediary between corpus and lexicographer: the corpus query system.  But this 

article is not a review of corpus query systems, so we simply use one – the one developed 

by the author and colleagues, the Sketch Engine (Kilgarriff et al 2004) – to illustrate the 

various ways in which the corpus can help the lexicographer.  For a review of corpus 

query systems see Kilgarriff and Kosem (2012). 

 

With ever growing quantities of text available online, faster computers, and progress in 

corpus and linguistic software, the field is changing all the time.  By the time any practice 

is standard and widely-accepted, it will be well behind the latest developments, so if this 

article were to talk only of standard and widely-accepted practices it would run the risk of 

looking dated by the time it was published.  Instead, I mainly describe recent and current 

work on projects I am involved in, arrogantly assuming that this coincides substantially 

with the leading edge of the use of corpora in lexicography. 

2  Headword lists 

 

Building a headword list is the most obvious way to use a corpus for making a dictionary. 

Ceteris paribus, if a dictionary is to have N words in it, they should be the N words from 

the top of the frequency list.   

 

2.1  In search of the ideal corpus 

It is never as simple as that, mainly because the corpus is never good enough. It will 

contain noise and biases. The noise is always evident within the first few thousand words 

of all the corpus frequency lists that I have ever looked at. In the British National Corpus
1
 

(BNC), for example, a large amount of data from a journal on gastro-uterine diseases 

presents noise in the form of words like mucosa – a term much-discussed in these specific 

documents, but otherwise rare and not known to most speakers of English.
2
 Bias in the 

spoken BNC is illustrated by the very high frequencies for words like plan, elect, 

councillor, statutory and occupational: the corpus contains a quantity of material from 

local government meetings, so the vocabulary of this area is well represented. Thus 

keyword lists of the BNC in contrast to other large, general corpora show these words as 

particularly BNC-flavoured.  

 

If we turn to UKWaC (the UK ‘Web as Corpus’, Baroni et al. 2009), a web-sourced 

corpus of around 1.6 billion words, we find other forms of noise and bias. The corpus 

contains a certain amount of web spam. We discovered that people advertising poker are 

skilled at producing vast quantities of ‘word salad’ which, at the time, escaped our 

automatic routines for filtering out bad material. Internet-related bias also shows up in the 

high frequencies for words like browser and configure. While noise is simply wrong, and 

its impact is progressively reduced as our technology for filtering it out improves, biases 

are more subtle in that they force questions about the sort of language to be covered in the 

dictionary, and in what proportions.
3
 

 



 3 

2.2 Multiwords 

Dictionaries have a range of entries for multiword items, typically including, for English, 

noun compounds (credit crunch, disc jockey), phrasal and prepositional verbs (take after, 

set out) and compound prepositions and conjunctions (according to, in order to). While 

corpus methods can straightforwardly find high-frequency single-word items and thereby 

provide a fair-quality first pass at a headword list for simple words, they cannot do the 

same for multiword items. Lists of high-frequency word-pairs in any English corpus are 

dominated by items which do not merit dictionary entries: the string of the usually tops 

the list of word-pairs, or bigrams.  

 

The Sketch Engine has several strategies here: one is to view multiword headwords as 

collocations (see discussion below) and to find multiword headwords when working 

through the alphabet looking at each headword in turn.   

 

Another is to use lists of translations. This was explored in the Kelly project  (Kilgarriff 

et al 2012).  The project worked on nine languages.  First, we prepared and cleaned up a 

corpus headword list of around 6000 words for each language.  Then, all the words on 

those lists were translated (by a professional translation agency) into each of the eight 

other languages, giving us a database with seventy-two directed language pairs.
4
   We 

reasoned that where one language uses a multiword expression for a unitary concept (say, 

English look for) it was likely that other languages had a single word for the concept (eg., 

French chercher, Italian cercare) and that when the Italian-to-English and French-to-

English translators encountered cercare and chercher, they were likely to translate it as 

look for. So, although look for did not appear in the English source list, it appeared 

multiple times in the database as a translation.  The strategy produced a modest number 

of multiword expressions. 

 

2.3 Lemmatisation  

The words we find in texts are inflected forms; the words we put in a headword list are 

lemmas. So, to use a corpus list as a dictionary headword, we need to map inflected forms 

to lemmas: we need to lemmatise. 

 

English is not a difficult language to lemmatise as no lemma has more than eight 

inflectional variants (be, am, is, are, was, were, been, being), most nouns have just two 

(apple, apples) and most verbs, just four (invade, invades, invading, invaded). Most other 

languages present a substantially greater challenge. Yet even for English, automatic 

lemmatisation procedures are not without their problems.  Consider the data in Table 1.  

To choose the correct rule we need an analysis of the orthography corresponding to 

phonological constraints on vowel type and consonant type, for both British and 

American English.
5
 

 

Table 1: Complexity in verb lemmatisation rules for English 

Lemma -ed, -s forms Rule -ing 

form 

Rule 

Fix fixed, fixes delete –ed, -es fixing delete –ing 
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Care cared, cares delete –d, -s  caring delete -ing, add -e 

Hope hoped, hopes delete –d, -s  hoping delete -ing, add -e 

Hop hopped delete –ed, undouble 

consonant 

hopping delete -ing, 

undouble consonant 

hops delete –s  

Fuse fused delete –d fusing delete -ing, add -e 

Fuss fussed delete –ed fussing delete –ing 

bus 

 

AmE bussed, 

busses?? 

delete –ed/-s,  

undouble consonant 

bussing delete -ing, 

undouble consonant 

BrE bused, bused delete –ed busing delete –ing 

 

Even with state-of-the-art lemmatisation for English, an automatically extracted lemma 

list will contain some errors. 

 

These and other issues in relating corpus lists to dictionary headword lists are described 

in detail in Kilgarriff (1997). 

 

2.4  User profiles 

Building a headword list for a new dictionary (or revising one for an existing title) has 

never been an exact science, and little has been written about it. Headword lists are 

typically extended in the course of a project and are only complete at the end. A good 

starting point is to have a clear idea of who will use your dictionary, and for what 

purpose: a ‘user profile’.  A user profile “seeks to characterise the typical user of the 

dictionary, and the uses to which the dictionary is likely to be put” (Atkins & Rundell 

2008: 28). This is a manual task, but it provides filters with which to sift computer-

generated wordlists.    

 

2.5 New words 

As everyone involved in commercial lexicography knows, neologisms punch far above 

their weight. They might not be very important for an objective description of the 

language but they are loved by marketing teams and reviewers. New words and phrases 

often mark the only obvious change in a new edition of a dictionary, and dominate the 

press releases. 

 

Mapping language change has long been a central concern of corpus linguists and a 

longstanding vision is the ‘monitor corpus’, the moving corpus that lets the researcher 

explore language change objectively (Clear 1988, Janicivic & Walker 1997). The core 

method is to compare an older ‘reference’ corpus with an up-to-the-minute one to find 

words which are not already in the dictionary, and which are in the recent corpus but not 

in the older one. O’Donovan & O’Neill (2008) describe how this has been done at 

Chambers Harrap Publishers, and Fairon et al. (2008) describe a generic system in which 

users can specify the sources they wish to use and the terms they wish to trace. 
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The nature of the task is that the automatic process creates a list of candidates, and a 

lexicographer then goes through them to sort the wheat from the chaff. There is always 

far more chaff than wheat. The computational challenge is to cut out as much chaff as 

possible without losing the wheat – that is, the new words which the lexicography team 

have not yet logged but which should be included in the dictionary.   

 

For many aspects of corpus processing, we can use statistics to distinguish signal from 

noise, on the basis that the phenomena we are interested in are common ones and occur 

repeatedly. But new words are usually rare, and by definition are not already known.  

Thus lemmatisation is particularly challenging since the lemmatiser cannot make use of a 

list of known words. So for example, in one list we found the ‘word’ authore, an 

incorrect but understandable lemmatisation of authored, past participle of the unknown 

verb author. 

 

For new-word finding we will want to include items in a candidate list even though they 

occur just once or twice. Statistical filtering can therefore only be used minimally. We are 

exploring methods which require that a word that occurred a maximum of once or twice 

in the old material occurs in at least three or four documents in the new material, to make 

its way onto the candidate list.  We use some statistical modulation to capture new words 

which are taking off in the new period, as well as the items that simply have occurred 

where they never did before. Many items that occur in the new words list are simply 

typing errors. This is another reason why it is desirable to set a threshold higher than one 

in the new corpus. 

 

For English, we have found that almost all hyphenated words are chaff, and often relate 

to compounds which are already treated in the dictionary as ‘solid’ or as multiword items. 

English hyphenation rules are not fixed: most word pairs that we find hyphenated (sand-

box) can also be found written as one word (sandbox), and as two (sand box). With this in 

mind, to minimise chaff, we take all hyphenated forms and two- and three-word items in 

the dictionary and ‘squeeze’ them so that the one-word version is included in the list of 

already-known items, and we subsequently ignore all the hyphenated forms in the corpus 

list. 

 

Prefixes and suffixes present a further set of items.  Derivational affixes include both the 

more syntactic (-ly, -ness) and the more semantic (-ish, geo-, eco-).
6
 Most are chaff: we 

do not want plumply or ecobuddy or gangsterish in the dictionary, because, even though 

they all have google counts in the thousands, they are not lexicalised and there is nothing 

to say about them beyond what there is to say about the lemma, the affix and the 

affixation rule. The ratio of wheat to chaff is low, but amongst the nonce productions 

there are some which are becoming established and should be considered for the 

dictionary. So we prefer to leave the nonce formations in place for the lexicographer to 

run their eye over. 

 

For the longer term, the biggest challenge is acquiring corpora for the two time periods 

which are sufficiently large and sufficiently well-matched. If the new corpus is not big 

enough, the new words will simply be missed, while if the reference corpus is not big 
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enough, the lists will be full of false positives. If the corpora are not well-matched but, for 

example, the new corpus contains a document on vulcanology and the reference corpus 

does not, the list will contain words which are specialist vocabulary rather than new, like 

resistivity and tephrochronology. 

 

While vast quantities of data are available on the web, most of it does not come with 

reliable information on when the document was originally written. While we can say with 

confidence that a corpus collected from the web in 2009 represents, overall, a more recent 

phase of the language than one collected in 2008, when we move to words with small 

numbers of occurrences, we cannot trust that words from the 2009 corpus are from more 

recently-written documents than ones from the 2008 corpus.  Two text types where date-

of-writing is usually available are newspapers and blogs. Both of these have the added 

advantage that they tend to be about current topics and are relatively likely to use new 

vocabulary. My current strategy for new-word-detection involves large-scale gathering of 

newspaper and blog feeds every day.  

3 Collocation and word sketches 

 

The arrival of large corpora provided the empirical underpinning for a view of language 

associated with Firth and Sinclair in which the patterning of words in text was central: 

collocation came to the fore.   

 

Since the beginning of corpus lexicography, the primary means of analysis has been the 

reading of concordances. Since the earliest days of the COBUILD project, the 

lexicographers scanned concordance lines – often in their thousands – to find all the 

collocations and all the patterns of meaning and use. The more lines were scanned, the 

more patterns and collocations were found (though with diminishing returns). This was 

good and objective, but also difficult and time-consuming. Dictionary publishers were 

always looking to save time, and hence cut costs.  

 

Early efforts to offer computational support were based on finding frequently co-

occurring words in a window surrounding the headword (Church & Hanks 1990). While 

these approaches had generated plenty of interest among university researchers, they 

were not taken up as routine processes by lexicographers: the ratio of noise to signal was 

high, the first impression of a collocation list was of a basket of earth with occasional 

glints of possible gems needing further exploration, and it took too long to use them for 

every word. 

 

The ‘word sketch’ is a response to this problem.  A word sketch is a one-page, corpus-

based summary of a word’s grammatical and collocational behaviour, as illustrated in 

Figure 1.  It uses a parser to identify all verb-object pairs, subject-verb pairs, modifier-

modifiee pairs and so on, and then applies statistical filtering to give a fairly clean list, as 

proposed by Tapanainen & Järvinen (1998, and for the statistics, Rychly 2008).  Word 

sketches need very large, part-of-speech-tagged corpora: in the late 1990s this had 

recently become available for general English in the form of the British National Corpus, 

and the first edition of word sketches were prepared to support a new, ‘from scratch’ 



 7 

dictionary for advanced learners of English, the Macmillan English Dictionary for 

Advanced Learners (MEDAL, Rundell 2001). 

 

 
 

Figure 1: Word sketch for baby (from enTenTen12, a very large 2012 web corpus) 

 

As the lexicographers became familiar with the software, it became apparent that word 

sketches did the job they were designed to do. Each headword’s collocations could be 

listed exhaustively, to a far greater degree than was possible before. That was the 

immediate goal. But analysis of a word’s sketch also tended to show, through its 

collocations, a wide range of the patterns of meaning and usage that it entered into. In 

most cases, each of a word’s different meanings is associated with particular collocations, 

so the collocates listed in the word sketches provided valuable prompts in the key task of 

identifying and accounting for all the word’s meanings in the entry. The word sketches 

functioned not only as a tool for finding collocations, but also as a useful guide to the 

distinct senses of a word – the analytical core of the lexicographer’s job (Kilgarriff & 

Rundell 2002). 
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It became clear that the word sketches were more like a contents page than a basket of 

earth. They provided a neat summary of most of what the lexicographer was likely to find 

by the traditional means of scanning concordances. There was not too much noise. Using 

them saved time. It was more efficient to start from the word sketch than from the 

concordance.   

 

Thus the unexpected consequence was that the lexicographer’s methodology changed, 

from one where the technology merely supported the corpus-analysis process, to one 

where it pro-actively identified what was likely to be interesting and directed the 

lexicographer’s attention to it. And whereas, for a human, the bigger the corpus, the 

greater the problem of how to manage the data, for the computer, the bigger the corpus, 

the better the analyses: the more data there is, the better the prospects for finding all 

salient patterns and for distinguishing signal from noise. Though originally seen as a 

useful supplementary tool, the sketches provided a compact and revealing snapshot of a 

word’s behaviour and uses and became the preferred starting point in the process of 

analyzing complex headwords. 

 

Since the first word sketches were used in the late 1990s, the Sketch Engine, the corpus 

query tool within which they are presented, has not stood still.  Word sketches have been 

developed for a dozen languages (the list is steadily growing) and have been 

complemented by an automatic thesaurus (which identifies the words which are most 

similar, in terms of shared collocations, to a target word, see Fig. 2) and a range of other 

tools including ‘sketch diff’, for comparing and contrasting a word with synonyms or 

antonyms (see Fig. 3). There are also options such as clustering a word’s collocates or its 

thesaurus entries. The largest corpus for which word sketches have been created so far 

contains seventy billion words (Pomikalek et al. 2012).  In a quantitative evaluation, two 

thirds of the collocates in word sketches for four languages were found to be ‘publishable 

quality’: a lexicographer would want to include them in a published collocations 

dictionary for the language (Kilgarriff et al. 2010). 
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Figure 2: Thesaurus entry for gargantuan 
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Figure 3: Sketch diff comparing strong and powerful 

4  Labels 

 

Dictionaries use a range of labels (such as usu pl., informal, Biology, AmE) to mark 

words according to their grammatical, register, domain, and regional characteristics, 

whenever these deviate significantly from the (unmarked) norm. All of these are facts 

about a word’s distribution, and all can, in principle, be gathered automatically from a 

corpus. In each of these four cases, computationalists are currently able to propose some 

labels to the lexicographer, though there remains much work to be done.   

 

In each case the methodology is to: 

 specify a set of hypotheses 

o there will usually be one hypothesis per label, so grammatical hypotheses 

for the category ‘verb’ may include: 

 is it often/usually/always passive 

 is it often/usually/always progressive  
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 is it often/usually/always in the imperative 

 for each word 

o test all relevant hypotheses 

o for all hypotheses that are confirmed, alert the lexicographer 

 (in the Sketch Engine, by adding the information to the word 

sketch). 

 

Where no hypotheses are confirmed – when, in other words, there is nothing interesting 

to say, which will be the usual case – no alerts are given. 

 

4.1  Grammatical labels: usually plural, often passive, etc. 

To determine whether a noun should be marked as ‘usually plural’, we simply count the 

number of times the lemma occurs in the plural, and the number of times it occurs 

overall, and divide the second number by the first to find the proportion. Similarly, to 

discover how often a verb is passivized, we can count how often it is a past participle 

preceded by a form of the verb be (with possible intervening adverbs) and determine 

what fraction of the verb’s overall frequency the passive forms represent. Given a 

lemmatised, part-of-speech-tagged corpus, this is straightforward. A large number of 

grammatical hypotheses can be handled in this way. 

 

The next question is: when is the information interesting enough to merit a label in a 

dictionary? Should we, for example, label all verbs which are over 50% passive as often 

passive? 

 

To assess this question, we want to know what the implications would be: we do not want 

to bombard the dictionary user with too many labels (or the lexicographer with too many 

candidate-labels). What percentage of English verbs occur in the passive over half of the 

time? Is it 20%, or 50%, or 80%? This question is also not in principle hard to answer: for 

each verb, we work out its percentage passive, and sort according to the percentage. We 

can then give a figure which is, for lexicographic purposes, probably more informative 

than ‘the percentage passive’: the percentile. The percentile indicates whether a verb is in 

the top 1%, or 2%, or 5%, or 10% of verbs from the point of view of how passive they 

are. We can prepare lists as in Table 2. This uses the methodology for finding the ‘most 

passive’ verbs (with frequency over 500) in the BNC. It shows that the most passive verb 

is station: people and things are often stationed in places, but there are far fewer cases 

where someone actively stations things. For station, 72.2% of its 557 occurrences are in 

the passive, and this puts it in the 0.2% ‘most passive’ verbs of English. At the other end 

of the table, levy is in the passive just over half the time, which puts it in the 1.9% most 

passive verbs. The approach is similar to the collostructional analysis of Gries & 

Stefanowitsch (2004). 

 

 

 

Table 2: The ‘most passive’ verbs in the BNC, for which a ‘usually passive’ label might 

be proposed. 
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Percentile Ratio Lemma Frequency 

0.2 72.2 station 557 

0.2 71.8 base 19201 

0.3 71.1 destine 771 

0.3 68.7 doom 520 

0.4 66.3 poise 640 

0.4 65.0 situate 2025 

0.5 64.7 schedule 1602 

0.5 64.1 associate 8094 

0.6 63.2 embed 688 

0.7 62.0 entitle 2669 

0.8 59.8 couple 1421 

0.9 58.1 jail 960 

1.1 57.8 deem 1626 

1.1 55.5 confine 2663 

1.2 55.4 arm 1195 

1.2 54.9 design 11662 

1.3 53.9 convict 1298 

1.5 53.1 clothe 749 

1.5 52.8 dedicate 1291 

1.5 52.4 compose 2391 

1.6 51.5 flank 551 

1.7 50.8 gear 733 

1.9 50.1 levy 603 

 

 

As can be seen from this sample, the information is lexicographically valid: all the verbs 

in the table would benefit from an often passive or usually passive label. 

 

A table like this can be used by editorial policy-makers to determine a cut-off which is 

appropriate for a given project. For instance, what proportion of verbs should attract an 

often passive label? Perhaps the decision will be that users benefit most if the label is not 

overused, so just 4% of verbs would be thus labelled. The full version of the table in 

Figure 4 tells us what these verbs are. And now that we know precisely the hypothesis to 

use (“is the verb in the top 4% most-passive verbs?”) and where the hypothesis is true, 

the label can be added into the word sketch. In this way, the element of chance – will the 

lexicographer notice whether a particular verb is typically passivized? – is eliminated, 

and the automation contributes to a consistent account of word behaviour.  

 

4.2   Register Labels: formal, informal, etc. 

Any corpus is a collection of texts. Register is in the first instance a classification that 

applies to texts rather than words. A word is informal (or formal) if it shows a clear 

tendency to occur in informal (or formal) texts. To label words according to register, we 

need a corpus in which the constituent texts are themselves labelled for register in the 

document header. Note that at this stage, we are not considering aspects of register other 

than formality. 

 

http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22station-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22base-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22destine-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22doom-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22poise-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22situate-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22schedule-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22associate-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22embed-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22entitle-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22couple-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22jail-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22deem-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22confine-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22arm-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22design-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22convict-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22clothe-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22dedicate-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22compose-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22flank-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22gear-v%22%5d
http://sketchengine.co.uk/auth/corpora/run.cgi/view?corpname=preloaded/bnc;q=q%5blempos=%22levy-v%22%5d
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One way to come by such a corpus is to gather texts from sources known to be formal or 

informal. In a corpus such as the BNC, each document is supplied with various text type 

classifications, so we can, for example, infer from the fact that a document is everyday 

conversation, that it is informal, or from the fact that it is an academic journal article, that 

it is formal.  

 

The approach has potential, but also drawbacks. In particular, it is not possible to apply it 

to any corpus which does not come with text-type information. Web corpora do not. An 

alternative is to build a classifier which infers formality level on the basis of the 

vocabulary and other features of the text.   There are classifiers available for this task: see 

for example Heylighen & Dewaele (1999), and Santini et al. (2009). Following this route, 

we have recently labelled all documents in a twelve billion word web corpus according to 

formality, so we are now in a position to order words from most to least formal. The next 

tasks will be to assess the accuracy of the classification, and to consider – just as was 

done for passives – the percentage of the lexicon we want to label for register. 

 

The reasoning may seem circular: we use formal (or informal) vocabulary to find formal 

(or informal) vocabulary.  But it is a spiral rather than a circle: each cycle has more 

information at its disposal than the previous one.  We use our knowledge of the words 

that are formal or informal to identify documents that are formal or informal.  That then 

gives us a richer dataset for identifying further words, phrases and constructions which 

tend to be formal or informal, and allows us to quantify the tendencies. 

 

4.3 Domain Labels: Geol., Astron., etc 

The issues are, in principle, the same as for register. The practical difference is that there 

are far more domains (and domain labels): even MEDAL, a general-purpose learner’s 

dictionary, has eighteen of these; larger dictionaries typically have over one hundred. 

Collecting large corpora for each of these domains is a significant challenge.    

 

It is tempting to gather a large quantity of, for example, geological texts from a particular 

source, perhaps an online geology journal. But rather than being a ‘general geology’ 

corpus, that subcorpus will be an ‘academic-geology corpus’, and the words which are 

particularly common in the subcorpus will include vocabulary typical of academic 

discourse in general, and vocabulary associated with the preferences and specialisms of 

that particular journal, as well as of the domain of geology. Ideally, each subcorpus will 

have the same proportions of different text-types as the whole corpus. None of this is 

technically or practically impossible, but the larger the number of subcorpora, the harder 

it is to achieve. 

 

Once we have the corpora and counts for each word in each subcorpus, we need to use 

statistical measures for deciding which words are most distinctive of the subcorpus: 

which words are its ‘keywords’, the words for which there is the strongest case for 

labelling. The maths we use is based on a simple ratio between relative frequencies, as 

implemented in the Sketch Engine and presented in Kilgarriff (2009). 
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4.4 Region Labels: AmE, AustrE, etc 

The issues concerning region labels are the same as for domains but in some ways a little 

simpler. The taxonomy of regions, at least from the point of view of labelling items used 

in different parts of the English-speaking world, is relatively limited, and a good deal less 

open-ended than the taxonomy of domains. In MEDAL, for example, it comprises just 

twelve varieties or dialects: American, Australian, British, Canadian, Carribean, Irish, 

New Zealand, and South/East/West African English. 

5  Examples 

 

Most dictionaries include example sentences. They are especially important in 

pedagogical dictionaries, where a carefully-selected set of examples can clarify meaning, 

illustrate a word’s contextual and combinatorial behaviour, and serve as models for 

language production. The benefits for users are clear, and the shift from paper to 

electronic media means that we can now offer users far more examples. But this comes at 

a cost. Finding good examples in a mass of corpus data is labour-intensive. For all sorts 

of reasons, a majority of corpus sentences will not be suitable as they stand, so the 

lexicographer must either search out the best ones or modify corpus sentences which are 

promising but in some way flawed.  

 

5.1 GDEX 

In 2007, the requirement arose – in a project for Macmillan – for the addition of new 

examples for around 8,000 collocations. The options were to ask lexicographers to select 

and edit these in the ‘traditional’ way, or to see whether the example-finding process 

could be automated. Budgetary considerations favoured the latter approach, and 

subsequent discussions led to the GDEX (‘good dictionary examples’) algorithm, which 

is described in Kilgarriff et al. (2008).    

 

The method is to score sentences, and only display the highest-scoring ones. A wide 

range of heuristics are used for scoring, including sentence length, the presence (or 

absence) of rare words or proper names, and the number of pronouns in the sentence. The 

system worked successfully on its first outing – not in the sense that every example it 

identified was immediately usable, but in the sense that it streamlined the lexicographer’s 

task.  

 

GDEX continues to be refined, as more selection criteria are added and the weightings of 

the different filters adjusted, for English and for other languages.  The lexicographer can 

scan a short list until they find a suitable example for whatever feature is being 

illustrated, and GDEX means they are likely to find what they are looking for in the top 

five examples, rather than, on average, within the top twenty to thirty. 
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6  Translations 

The corpora that help most for finding translations are parallel corpora : corpora 

comprising pairs of texts that are translations of each other.  Parallel corpora are the fuel 

that Google Translate feeds on, and ‘statistical machine translation’, of which Google 

Translate is the highest-profile example, is a great success story of language technology 

and the use of corpora.      

 

Parallel corpora are of most use if they are aligned: that is, for each sentence, or word, in 

the one text, the computer knows what the corresponding item is in the other.  Where the 

text is a straightforward literal translation, sentence alignment can now be performed with 

high accuracy.  Of course, some sentences are not one-to-one, and some sections may 

exist in only one language.  Working solutions have been found for identifying and 

handling these cases, which are all on a cline of how closely the translation follows the 

original.  Throughout parallel corpus work, text-pairs which are literal translations are 

easiest to work with, whereas free translations of novels offer much less.   

 

Word alignment is intrinsically a trickier concept than sentence alignment.  Firstly, very 

often, an individual word is not translated by a single-word.  Secondly, items often do not 

stay in the same order.  One can expect the sentences and their translations to be in the 

same order as each other, but one cannot expect the words and their translations to be in 

the same order in source and target text. 

 

There are two ways for lexicographers to use parallel corpora: parallel concordances, and 

summaries.  The first is simpler and is based only on sentence alignments.  The 

lexicographer searches for a word or phrase on one side of the corpus, and sees pairs of 

sentences which are translations of each other.  The website http://www.linguee.com 

offers exactly this, for the big European languages, and since its arrival in 2009.     

http://www.linguee.com/
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Figure 4: Screenshot from Linguee.com for English search term baby, language pair English-German. 

 

It  has rapidly become a translator’s and favourite.  Its display, for the English search 

term baby and the language pair English-German, is shown in Figure 4. 

 
 

As with examples in general, people (translators, lexicographers and other users) find 

these example pairs very useful and easy to use.  They will often remind a lexicographer 

of ways of translating a word or phrase that should be included in the dictionary entry, 

and will supply example sentence pairs to be included (usually after some editing). 

 

The ‘summaries’ approach for using parallel corpora only applies when the corpora are 

large, and for words where there are many sentence pairs.  Then, it will not be possible 

for the lexicographer to read all the sentence pairs, and it should be possible for the 

computer to summarise what it finds  in them.  This is a bilingual version of the reasoning 

that led to word sketches.  In a process closely related to methods for word alignment, the 

computer can find the other-language words that occur with particularly high frequency 

in the node word’s aligned sentences.  The process can also be applied to find candidate 

collocations as translations of the node word’s collocations. 

 

A first version of a bilingual word sketch based on a parallel corpus, for red for the 

language pair English-French, is shown in Fig. 5. 
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Figure 5: Bilingual word sketch based on a parallel corpus, for red for the language pair English-French. 

 

 

A limiting factor for parallel-corpus work is the availability of a parallel corpus, for the 

language pair in question.  The early work in the field was based on the Canadian 

parliamentary proceedings, ‘Canadian Hansard’, which were available in English and 

French and were fairly literal professional translations of each other.  Other sources 

frequently used, for the languages of the EU, are the European parliamentary proceedings 

and other documents from the EU (as used for the screenshot).  Other text types where 

parallel data is often available include software documentation, documentation for 
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vehicles and machinery, and film transcripts.  A large and well-maintained collection of 

parallel data is available at the OPUS website.
17

  For any particular language pair, some 

text types will be available, others will not. 

7  Summary 

 

Corpora can make dictionary-making more accurate, efficient, complete and consistent.   

They can deliver a candidate headword list, and, where the corpora are developed with 

care with neologism-finding in mind, can identify candidate neologisms. 

 

There are many ways in which they can support entry-writing.  They can provide a wide 

range of clues to the lexicographer for analysing the word’s range of meaning into 

distinct senses.  In combination with a suitable corpus query system they can find the 

idioms, phrases and collocations for a word.  They can identify if a word has noteworthy 

behaviour in relation to grammar, domain, region and register.  They can do the 

preparatory work for finding good example sentences, and translations. 

 

Corpora have been used in these ways in a range of dictionary projects, and the chapter 

has described how this has worked, with reference to a particular corpus query tool, the 

Sketch Engine.  Over the last two decades, the lexicographer’s role has been more and 

more often, checking and confirming or editing the corpus tool’s work, where earlier it 

would have been ‘writing from scratch’. 

 

In the early twenty-first century, with the advent of the web and many and varied online 

resources, much is changing in the world of dictionary-making, and many things are 

uncertain.  Quite what the role of the lexicographer will be, in ten years’ time, is far from 

clear, but I am confident that the role of the corpus will grow, with the line between 

dictionary and corpus blurring, and the lexicographer operating at that interface. 
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Notes               

                                                 
1
 The website for the BNC is http://natcorp.ox.ac.uk  

2
 In the BNC mucosa is marginally more frequent than spontaneous and enjoyment, but appears in far fewer 

corpus documents. 
3
 As is now generally recognised, the notion of ‘representativeness’ is problematical with regard to general-

purpose corpora like BNC and UKWaC, and there is no ‘scientific’ way of achieving it: see e.g. Atkins & 

Rundell (2008: 66). 
4
 The database can be explored online at http://kelly.sketchengine.co.uk  

5
 The issue came to our attention when an early version of the BNC frequency list gave undue prominence 

to verbal car. 
6
 Here we exclude inflectional morphemes, addressed under lemmatisation above: in English a distinction 

between inflectional and derivational morphology is easily made for most cases. 
7
 http://opus.lingfil.uu.se/ 

http://natcorp.ox.ac.uk/
http://kelly.sketchengine.co.uk/
http://opus.lingfil.uu.se/

