
Using NVH as a Backbone Format in the Lexonomy
Dictionary Editor

Miloš Jakubíček, Vojtěch Kovář, Michal Měchura, and Adam Rambousek

Natural Language Processing Centre
Faculty of Informatics, Masaryk University, Brno, Czechia

{jak,xkovar3,xrambous}@fi.muni.cz

Lexical Computing
Brno, Czechia

{milos.jakubicek,vojtech.kovar,adam.rambousek}@sketchengine.eu

Abstract. In this paper we present an ongoing development in the Lexon-
omy dictionary editor consisting of replacing the XML backbone of the
editor with an NVH-based one. We describe the core properties of the
recently introduced NVH format, implications for using it in Lexonomy
as well as a self-contained Python implementation in the form of one
script (nvh.py) that can be used for several standard processing opera-
tions such as parsing, serialization, search or schema validation. We also
outline some planned future development related to the usage of NVH in
Lexonomy.

Keywords: NVH, XML, Lexonomy, dictionary editor

1 Introduction

This paper focuses on the development of Lexonomy, a lightweight dictionary
editing system [1,2]. Lexonomy is a web-based tool which allows users to up-
load, edit and publish their dictionaries. It is tightly bound to the Sketch Engine
corpus management system [3]: users can easily import corpus content from
Sketch Engine into Lexonomy, either manually (pull corpus examples, colloca-
tions or thesaurus items) or automatically (by using the OneClick Dictionary
approach [4]) or in a post-editing fashion [5]) where the dictionary is initially
drafted fully automatically and post-edited in isolated steps inside of Lexon-
omy.

From the beginning, dictionaries in Lexonomy were stored as XML data
of arbitrary XML schemas, stored as plain text in an SQLite database [6]
and edited using the browser-based Xonomy XML editor on the front-end [7].
The main motivation behind this decision was the emphasis on flexibility (so
that users could upload dictionaries not restricted in their schemas) as well
as reliance on a widely known data format (XML). Over the five years of
Lexonomy development, we have however established that this (i.e. arbitrary

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2022, pp. 55–61, 2022. © Tribun EU 2022

56 M. Jakubíček et al.

XML-based schemas) hinders any further Lexonomydevelopment as a platform
for automating dictionary production.

Particularly, we have established the following findings:

– unrestricted dictionary schemas are difficult to handle by most users For
any automatic extraction of data from corpora, the user needs to manually
tell what information should be included into what part of the dictionary
entry, such aswhich entry part should contain dictionary examples,whether
the samples are per-sense or per-headword etc. For users-lexicographers
that are not skilled in data modelling (and we assume this is the vast
majority), this is a very error-prone task, especially if they initially designed
a complex dictionary schema.

– unrestricted XML serialization is not suitable for dictionaries While XML
became standard exchange and data format in many applications, including
dictionaries, it is not suitable as format that should be human-editable, it
is (without any restrictions) rather difficult to process computationally in
terms of data manipulation and database search and it also has been shown
as not suitable for dictionary modelling [8].

While the first issue – data modelling in lexicography – is currently being
addressed by the LEXIDMA consortium as a forthcoming OASIS standard [9]1,
in this paper we focus on the latter problem and describe an alternative plain
text data format (NVH), its manipulation tool implemented in Python and used
by Lexonomy.

2 NVH data format

NVHstands for name-value hierarchy.2 It is a plain text data format significantly
simpler than XML. A NVH file is a list of nodes, each node having a value and
(optionally) a list of children nodes (see examples in Figures 1 and 2.)

node1: value of node1
childnode1: value of childnode1
childnode2: value of childnode2

grandchildnode1: value of grandchildnode1
childnode3: value of childnode3

node2: value of node2
node3: value of node3

Fig. 1: Structure of the NVH format in a nutshell.

1 See https://www.oasis-open.org/committees/lexidma/
2 See https://namevaluehierarchy.org

Using NVH as a Backbone Format in the Lexonomy Dictionary Editor 57

hw: at-c
language: Tagalog
lemma: at
freq: 332418
pos: c
flag: ok
sense:

example: Kumakain siya ng prutas at gulay.
quality: good
example_english: She was eating fruits and vegetables.

english: and

Fig. 2: A sample dictionary entry represented in NVH.

The expressiveness of the format follows from its simplicity. Each nodemust
be placed on a separate line, it features a Python-style mandatory indentation of
children nodes and each name-value pair must be separated by the colon-space
character pair. No other strings bear particular semantics (value is defined as
the string following the separator and ending by the newline character, it may
be empty), leaving it up to the user for specification of higher-level constructs
like namespaces, intra-file cross-references or external links. Obviously, NVH is
much easier to parse by a program as well as much easier to read or write by
a human user.

In this paper we present a processing tool for NVH that is implemented as
self-contained Python script nvh.py and is available from the official project size
of NVH.3 The script in its current version implements the following operations:

– parsing into a Python data structure
– serialization of the same structure into NVH
– search by a simple query language
– splitting by top-level node into multiple files
– merging two files in a patch-style fashion
– schema generation from an existing NVH file
– schema validation of an NVH file against a predefined schema
– export to XML
– export to JSON

The nvh.py script can be either imported into another Python script (which
would be the typical scenario when using it for parsing and subsequent custom
manipulation of the parsed content) or used from command-line where the
first argument specifies the action to be taken, as we describe in detail in the
following:
3 See https://github.com/michmech/nvh/blob/master/python/python.md

58 M. Jakubíček et al.

2.1 Parsing and search: nvh.py get
The full syntax of the command is:

nvh.py get file.nvh [SELECT_FILTER [PROJECT_FILTER]]
The selection and projection filter are optional, not using them means that

the script would be parse the file.nvh and reprint its content. The notions of
selection and projection follow the paradigm of relational algebra: a selection
filter specifies which nodes should be retrieved, a projection filter specifies what
parts of the selected nodes will be retrieved. Not using the projection filter
implies printing the whole top-level node matching the selection criteria.

Filters use a dot-style language to identify node parts (sense translation into
English given in Figure 2would be identified as hw.sense.english). Theremay
be multiple selection filters which are logically ANDed, and each node in the
filter may feature one of the following operators:
– equality (=STRING)
– regular expression matching (~=Python RE)
– count (#=, #> or #<)
Each of the operators can be negated by prefixing it with an exclamation

mark (!). A special selection filter taking the form of ##NUMBERmay be used only
at the beggining of the list of selection filters, limiting the retrieval to the first
NUMBER items only. An example of a search command using the data in Figure 2
would be

nvh.py get file.nvh 'hw.sense.example#>0.quality=good' hw.sense
This querywould retrieve all sense (identified as hw.sense) fromentries hav-

ing at least one example marked as good quality. More examples are available
in the project documentation online.4

2.2 Merging and patching: nvh.py put
The full syntax of the command is:

nvh.py put file.nvh patch.nvh [REPLACE_FILTER]
It merges the content of patch.nvh into file.nvh by finding shared nodes

and appending any nodes and children nodes not present yet from the patch
into main file. The optional dot-style replace filter may be used to select which
portion of the patch (such as an entry part only) shall be merged.

2.3 Splitting: nvh.py split
Splitting is used to split the NVH file by top-level nodes, or to put it in
dictionary terms, to generate one NVH file per dictionary entry. The command
nvh.py split file.nvh DIRECTORY takes the file.nvh as input and generates
individual files into DIRECTORY. This is useful e.g. to keep per-entry copies
tracked and versioned by a file-based management system such as Git.
4 See https://github.com/michmech/nvh.

Using NVH as a Backbone Format in the Lexonomy Dictionary Editor 59

2.4 Schema generation and validation: nvh.py genschema|checkschema

The command nvh.py genschema file.nvh parses the input file.nvh and
generates a corresponding NVH schema.5 An NVH schema describes valid
node names and their allowed cardinalityusing (obligatory/optional, Kleene
plus/Kleene star).

The counterpart is then represented by the nvh.py checkschema file.nvh
schema.nvh command which validates file.nvh against a schema given in
schema.nvh.

2.5 Generic exports: nvh.py xmlexport|jsonexport

These two commands perform generic exports to XML and JSON, respectively.
The XML export transforms all nodes into XML elements bearing their value in
an attribute and keeping child nodes as child XML elements. The example in
Figure 2 would be transformed into an XML file as presented in Figure 3 and
into JSON as presented in Figure 4.

<?xml version="1.0"?>
<dictionary>

<hw v="at-v">
<lemma v="at" />
<language v="Tagalog" />
<pos v="c" />
<freq v="332418" />
<sense>
<example v="Kumakain siya ng prutas at gulay.">
<quality v="good" />
<example_english v="She was eating fruits and vegetables." />

</example>
<english v="and" />

</sense>
</hw>

</dictionary>

Fig. 3: Generic XML export from an NVH input of Figure 2.

3 Using NVH as a Lexonomy backbone

The flexibility of Lexonomy in terms of dictionary schemes has always been an
important feature. Using NVH inside Lexonomy instead of XML enables us to
5 See https://github.com/michmech/nvh/blob/master/docs/schema.md for detailed
description of the schema format.

60 M. Jakubíček et al.

maintain a simple text format usable for human reading and writing as well as
very efficient machine processing. Data may be saved in the underlying SQLite
database directly in the NVH format, individual entries but also small dictionar-
ies can be directly searched using nvh.py with very low latency response (less
than a second).

For large dictionaries, the JSON conversion is used for one-way encoding
into JSON and using the built-in SQLite JSON indexing to store the JSON
content. A simple conversion procedure has been developed to translate the
query language of nvh.py get into SQLite SQL-JSON queries. Both NVH and
JSON content is stored in the database for each entry, using JSON only for fast
indexed search, but NVH for any editing. Upon every update, the JSON content
is regenerated.

{
"hw": [{
"value": "at-c",
"children": {
"lemma": [{"value": "at", "children": {} }],
"freq": [{"value": "332418", "children": {} }],
"pos": [{"value": "c", "children": {} }],
"flag": [{"value": "ok", "children": {} }],
"sense": [{
"value": "",
"children": {
"example": [{
"value": "Kumakain siya ng prutas at gulay.",
"children": {
"quality": [{"value": "best", "children": {} }],
"example_english": [{
"value": "She was eating fruits and vegetables.",
"children": {}

}]
}

}],
"english": [{"value": "and", "children": {} }]

}
}]

}
}]

}

Fig. 4: Generic JSON export from an NVH input of Figure 2.

Using NVH as a Backbone Format in the Lexonomy Dictionary Editor 61

4 Conclusions and future development

In this paper we have presented recent development of Lexonomy consisting
of replacing the XML backbone with an NVH-based one. This development is
in line with the spirit of Lexonomy being a lightweight dictionary editor that
can handle very large dictionaries (hundreds of thousands of complex entries)
efficiently and supportmodern lexicographicworkflow that is tightly connected
to corpus data.

For Lexonomy, this particularly means to support the post-editing approach
to dictionary making and Lexonomy does that by making it easy to maintain
multiple versions of the dictionary, edit them simultaneously by the editorial
team, split them and merge them as needed into individual editing tasks with
custom editing widgets, while having a comprehensive NVH version available
at every stage of the process.

In the future, more functions related to the management of the post-editing
workflow are going to be added to Lexonomy, in the first place an NVH-based
front-end editor is going to replace the current Xonomy-based one.

Acknowledgements This work has been partly supported by the Ministry of
Education of CR within the Lindat Clarin Center. This project has received
funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 731015.

References

1. Měchura, M.B., et al.: Introducing Lexonomy: an open-source dictionary writing and
publishing system. In: Electronic Lexicography in the 21st Century: Lexicography
from Scratch. Proceedings of the eLex 2017 conference. (2017) 19–21

2. Rambousek, A., Jakubíček, M., Kosem, I.: New developments in lexonomy. Electronic
lexicography in the 21st century (eLex 2021) Post-editing lexicography (2021) 86

3. Kilgarriff, A., Baisa, V., Bušta, J., Jakubíček, M., Kovář, V., Michelfeit, J., Rychlý, P.,
Suchomel, V.: The Sketch Engine: ten years on. Lexicography 1 (2014)

4. Jakubíček, M., Kovář, V., Rychlý, P.: Million-Click Dictionary: Tools and Methods for
Automatic Dictionary Drafting and Post-Editing. EURALEX XIX (2021)

5. Blahuš, M., Cukr, M., Herman, O., Jakubíček, M., Kovář, V., Medveď, M.: Semi-
automatic building of large-scale digital dictionaries. Electronic lexicography in the
21st century (eLex 2021) Post-editing lexicography (2021) 99

6. Hipp, R.D.: SQLite (2020)
7. Měchura, M.B.: Building XML Editing Applications with Xonomy (2018)
8. Měchura, M.B.: Better than XML: Towards a Lexicographic Markup Language.

Available at SSRN https://ssrn.com/abstract=4165854 (2022)
9. Tiberius, C., Krek, S., Depuydt, K., Gantar, P., Kallas, J., Kosem, I., Rundell, M.:

Towards the elexis data model: defining a common vocabulary for lexicographic
resources. Electronic lexicography in the 21st century (eLex 2021) Post-editing
lexicography (2021) 91

