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Abstract 

Corpora are large objects and querying them efficiently is non-trivial.  There are substantial costs to building them, storing them, 
maintaining them, and building and maintaining software to access them.  We propose a model where this work is done by a corpus 
specialist and NLP systems then use corpora via web services.  Our corpus tool is fast, even for billion-word corpora, and offers a wide 
range of queries via its web API.  We have large corpora available for twenty-six languages, and are experts in preparing large corpora 
from the web, with particular expertise in web text cleaning and de-duplication.  We regularly increase our coverage of the world’s 
languages via our ‘corpus factory’ programme.  For English, we are building corpora that are both bigger and more richly marked up 
than others available.  We present a case study of a current project using the Sketch Engine, via its web API, to automatically draft 
‘fill-the-gap’ test items for language testing.  The combination of the web services model, the corpora, and the tools, will allow many 
NLP researchers to use bigger and better corpora in more sophisticated ways than would otherwise be possible. 

 

1. Barriers to entry 
In the days of rule-based NLP, starting a PhD was easy.  
The student could write a few grammar rules, lexical 
entries and example sentences, and all the technology 
required was a prolog system. 
 
Since the advent of empirical methods, it is harder.  Now 
the student needs a corpus and tools to access it.   Before 
embarking on their research question - perhaps about 
syntax, or parsing, or anaphora, or discourse structure - 
they must first review the different resources they might 
use, or work out if they must build their own, and then 
cross the technical and administrative hurdles to building 
it or acquiring it.  They must then either write their own 
code for accessing it or install and become expert on 
somebody else's tool.  Any output for the first few months 
is likely to be dominated by aspects of the data or tool that 
they had not anticipated rather than linguistic ones, and it 
is all too likely that they start feeling their thesis is being 
sidetracked into corpora and corpus tools.  If they do not 
have the programming skills or technical support to clear 
these hurdles, they are likely to become dispirited or to 
shy away from the question that first motivated them and 
to switch to one which makes use of corpora in simpler 
ways, though they may then forever be dogged by the 
anxiety that their research will not stand up to scrutiny by 
the researcher, otherwise like them, but who did have the 
support or computational skill to `do everything properly'. 
 
Might it be possible to use corpora without all this 
overhead, like a driver collecting a hire car? 
 
We believe not only that it is possible (and that we already 
have a service offering what is required), but that it is 
likely to improve the quality of research as energies are 
not wasted on non-specialist, mediocre, corpus- 
preparation and corpus-accessing, but are directed at the 
topic that motivated the researcher. 
 
 
 

2. The Sketch Engine 
The Sketch Engine is a corpus query tool. It has been 
widely used for lexicography, by clients including Oxford 
University Press, Cambridge University Press, Collins, 
Macmillan and FrameNet, and for linguistic and language 
technology teaching and research at universities. Corpora 
for many languages have been installed. It is fast, 
responding promptly for most queries for billion-word 
corpora.  It offers all standard corpus query functions: 
concordancing, sorting and sampling of concordances, 
wordlists and collocates according to a range of 
parameters, full regular-expression searching, subcorpus 
specification and searching on subcorpora.  It also offers 
some non-standard ones:  

• word sketches: one-page summaries of a word’s 
grammatical and collocational behaviour, see 
Figure 1 

• a distributional thesaurus 
• keyword lists which identify the distinctive 

words of a subcorpus: see Figure 2. 
 
The basic input is a corpus, preferably lemmatised and 
part-of-speech tagged. For the word sketches and 
thesaurus, either the corpus must already be parsed, or 
another input is required: a shallow grammar, written as a 
regular expression over words and POS-tags, in which 
each grammatical relation to appear in the word sketch is 
defined. For a computational linguist with a knowledge of 
the language in question, preparing a basic grammar is not 
a large task. 

2.1  The Sketch Engine Web Service and API 
Lexical Computing Ltd., the owner of the Sketch Engine, 
provides a web service which gives easy access to corpora. 
Users can start using the corpus for their question directly: 
the user interface is simple and there is no software to 
install. 
 
For four years now there has been a Web API for the 
Sketch Engine.  It is written in JSON and is designed for 
easy integration into tools written in Java, Python, Perl etc.  
It covers the core functionality of the Sketch 



web    BiWeC freq = 787440   
object_of 33396  
surf 1199 9.79 
browse 851 8.33 
weave 629 8.21 
host 1487 7.86 
spin 523 7.8 
base 4884 7.71 
search 1386 7.62 
crawl 166 6.66 
scour 116 6.47 
chat 256 6.3 
untangle 83 6.25 
interconnect 75 5.91  

and/or 18695  
clipart 503 9.48 
software 2083 6.16 
correu 36 5.95 
spider 68 5.11 
print 372 5.05 
desktop 115 4.98 
email 509 4.97 
transience 19 4.97 
designer 213 4.87 
gopher 19 4.64 
telnet 19 4.62 
multimedia 63 4.62  

pp_of-i 10574  
deceit 198 7.86 
intrigue 176 7.54 
spider 95 5.79 
lie 247 5.78 
interconnection 31 5.66 
deception 67 5.56 
interrelationship 21 5.38 
quill 20 5.34 
interdependence 23 5.26 
datum 2007 5.0 
corruption 71 3.99 
trust 126 3.98  

modifies 649632  
site 264048 11.04 
page 97315 10.12 
browser 19649 9.36 
server 14586 8.73 
design 14395 7.96 
cam 4617 7.77 
designer 5430 7.68 
standard 7949 7.3 
developer 4218 7.29 
application 9633 7.11 
address 5487 6.99 
interface 3077 6.64  

 
Figure 1: Word sketch for the English noun web, drawn from the 5.5b BiWeC corpus, based on 787,440 occurrences 

(truncated to fit.)  The first figure for each collocation is the frequency count, the second is the salience score (Logdice, see 
help pages at http://www.sketchengine.co.uk).  One can sort by either.  Other options include ‘more data’, ‘less data’ and 

clustering of collocates. Clicking on the frequency count gives a concordance of the instances. 
 
 
 

 new_model_corpus:speech  new_model_corpus   

lemma  Freq ARF ARF/mill  Freq ARF ARF/mill  Score 

sir  6559 537.5 560.0  8641 1365.5 24.5  16.5 

Yeah  12839 1015.8 1058.3  17703 3342.1 60.0  15.3 

hey  9294 781.6 814.3  12371 2709.5 48.7  14.1 

Hello  4623 411.1 428.3  6574 1392.0 25.0  12.5 

okay  9512 709.7 739.4  14043 2997.1 53.8  11.7 

fuck  7720 456.6 475.7  11540 1750.3 31.4  11.7 

hi  3309 291.0 303.1  4449 961.2 17.3  11.5 

shit  4607 370.6 386.1  7266 1554.7 27.9  10.4 

No  12340 1097.5 1143.4  20342 5795.3 104.1  10.1 

Huh  2667 234.5 244.4  3708 903.8 16.2  9.7 

uh  3106 219.2 228.4  4439 828.3 14.9  9.6 

oh  17684 1498.8 1561.5  31159 9048.8 162.5  9.1 

Bye  1145 102.6 106.9  1284 196.9 3.5  8.6 

bye  1233 110.8 115.4  1529 320.0 5.7  8.0 

bitch  1643 146.3 152.4  2495 629.8 11.3  7.6 

sorry  8127 726.5 756.8  15558 5234.7 94.0  7.4 

yes  18823 1667.0 1736.8  37498 12833.4 230.4  7.3 

darling  1364 119.9 124.9  1971 495.4 8.9  7.1 

honey  1588 140.9 146.8  2689 681.6 12.2  7.1 

you  336328 30020.7 31276.7  759009 251027.5 4507.6  6.9 

 
Fig. 2.  Top keywords of spoken component of New Model Corpus, as computed and presented in the Sketch Engine, with 

simple-maths parameter of 10.  Component parts (won, don) of contracted forms removed.



Engine: one can submit queries which return 
concordances, word sketches, word lists and thesaurus 
entries.1 

2.2 Corpora available in the Sketch Engine 
We specialise in large general-language corpora (as 
required for lexicography).  We have 
publicly-accessible corpora of over 5m words for 
twenty-six languages (including all major world 
languages), with over 1 billion words for three: see 
Table 1.2    We have a ‘Corpus Factory’ (Kilgarriff et al 
2010) programme for adding to the list of languages in 
our repertoire by preparing 100m word corpora from 
web sources, using BootCat methods (Baroni and 
Bernardini 2004).   
 
Arabic (MSA) 174 Persian 6 
Chinese  (simp and trad)  456 Portuguese 66 
Czech 800 Romanian 53 
Dutch 128 Russian 188 
English 5,508 Slovak 536 
French 126 Slovene 738 
German 1,627 Spanish 117 
Greek 149 Swedish 114 
Hindi 31 Telugu 5 
Indonesian 102 Thai 108 
Irish 34 Vietnamese 174 
Italian 1,910 Welsh 63 
Japanese 409   
Norwegian 95   
 
Table 1: Languages, and the largest corpus available for 
that language in the Sketch Engine (April 2010, figures 

in millions of words+punctuation) 

3 The Merits of Big, High-Quality Corpora 
Since Banko and Brill (2004), it is entirely clear that 
corpus-based NLP methods tend to perform better, the 
bigger the corpus.  This is one reason for wanting a big 
corpus.  Another is simply to have ample data even for 
rare phenomena.  A third is that a very large corpus will 
have many large subcorpora.  If, for example, we wish 
to look at Business English, or medical English, or 
informal English, we can build a classifier to 
distinguish text of this type from others, and then apply 
the classifier to a very big corpus, which will then give 
a subcorpus large enough to support research and 
model-building for the specific variety.  
 
Corpus quality is less discussed than corpus size.  It is 
harder to define and measure.  Also, if people become 
aware of bad data in their corpus, they are more likely 
to remove it than announce it.  Data cleaning is not 
high-status work, and papers are likely to pass over it 
lightly at best, either ignoring the failings of the dataset 
or presenting results after obvious anomalies have been 
                                                           
1  Full documentation at 
http://trac.sketchengine.co.uk/wiki/SkE/Methods/index 
2  We collaborate with numerous groups, and some 
corpora were built by others, in particular Serge Sharoff 
at the University of Leeds, UK, and Marco Baroni, 
Silvia Bernardini, Adriano Ferraresi and colleagues at 
the Universities of Bologna and Trento, Italy. 

excluded.  Thus a paper which describes work with a 
vast web corpus of 31 million web pages devotes just 
one paragraph to the corpus development process, and 
mentions de-duplication and language-filtering but no 
other cleaning (Ravichandran, Pantel, and Hovy 2005, 
section 4). Another paper using the same corpus notes, 
in a footnote, “as a preprocessing step we hand-edit the 
clusters to remove those containing non-English words, 
terms related to adult content, and other 
webpage-specific clusters” (Snow, Jurafsky, and Ng 
2006). 
 
Academic papers do not often present results which 
compare performance on ‘better’ and ‘worse’ corpora.  
Nonetheless, few would dispute the near-tautology that 
better corpora are likely to give better results.  There 
are many forms that bad data in corpora can take.  They 
include duplicates, navigation bars and other web 
material, long lists, logfiles, code, texts in the wrong 
language, and language-like computer-generated spam.  
(There are other issues about texts in the correct 
language but which introduce unwanted biases because 
there are so many of them.  Almost all 
general-language corpora have this problem, at least 
from some users’ perspective.) 
 
We are corpus specialists. We have explored in depth 
the issues of web data cleaning (Baroni et al 2008), 
character encoding (Kilgarriff et al 2010) and 
de-duplication of large datasets (Pomikalek et al 2009).  
People accessing our corpora will very often be 
accessing bigger and better corpora than would 
otherwise be possible.  

3.1 The Google/Yahoo/Bing option 
A number of researchers have followed the lead of 
Grefenstette (1999) and gathered data through 
extensive querying of one of the main search engines 
(in Grefenstette’s case, Altavista, now usually Google, 
Yahoo or Bing); see for example Keller and Lapata 
(2003), Nakov and Hearst (2005), Nakov (2008).  The 
search engines access far more data than we do even in 
our largest corpora: as against our 5.5 billion, Google 
indexes at least a trillion words of English.  Search 
engines can be used as a corpus query tool, and if size 
of data is the overriding consideration, we can offer no 
alternative.  However there are numerous 
disadvantages to using Google, Yahoo or Bing in this 
way:  
 

• they are not linguistically aware so do not 
permit e.g., searches for lemmas 

• the query syntax is limited (and subject to 
change without notice) 

• they limit the number of queries one can make 
• they limit the number of results per query 
• results are sorted according to a scheme which 

bears no relation to a linguist’s wish to see a 
random sample 

• results are not replicable.   
 
(For a full critique, see Kilgarriff 2007.)  Using the 
search engines is a solution with many downsides: if a 
corpus of 5.5 billion words (for English) is big enough 
(and for very many, though by no means all, kinds of 



research it will be) then there are many advantages to 
using a specialised service for linguists, such as the 
Sketch Engine, rather than a search engine. 

3.2 New English Corpora 1: BiWeC 
BiWeC (Big Web Corpus, Pomikalek et al 2009) is a 
response to the ongoing need for bigger corpora, and to 
bridging the gap between corpora that are available in 
corpus query tools and the web as available via search 
engine indexes.  Our target is 20b words, perhaps 1% of 
the non-duplicate textual data indexed by Google (see 
Kilgarriff 2007 for more on relative sizes of large 
corpora and Google indexes).  Our work here has 
focused on, first, efficient crawling, and then, 
high-accuracy data cleaning and de-duplication.  At 
time of writing, 5.5 b words have been fully cleaned, 
de-duplicated, lemmatised, POS-tagged, and loaded 
into the Sketch Engine. 

3.3 New English corpora 2: New Model Corpus 
The British National Corpus3 has been very widely 
used across linguistics and language technology, and 
has often been held up as a model for how to design a 
corpus.  However it was designed in the 1980s, before 
the web existed, and the model, as well as the data, is 
out of date (for the case in full see Kilgarriff et al 2007).   
 
The next question is: what does a contemporary model 
corpus look like?  The New Model Corpus is a response, 
comprising 100m words gathered entirely from the web 
but with proportions of different text types not unlike 
those of the BNC.   It is available for research, and we 
plan to annotate it as a community-wide exercise, with 
all NLP researchers invited to download the data, 
process it with their tools, and return their annotations 
to us.  We shall then integrate the annotations to give a 
multi-annotated corpus which will also be available for 
research. 

4 A Case Study: TEDDCLOG 
TEDDCLOG (Taiwan English Data Driven CLOze test 
Generation) is a system which drafts fill-the-gap 
exercises (sometimes known as cloze tests) for learners: 
the learner is given a sentence in which one word (the 
key) has been replaced with a gap, and a choice of four 
or five words (the key plus three or four distractors) to 
fill the gap.  Exercises of this kind are popular with 
teachers of English and also with language testing 
organisations.  However the tests are usually based on 
invented sentences, created by human ‘test item 
writers’.  There is a now well-chronicled tendency for 
there to be a mismatch between the language of 
invented sentences and that found in corpora of 
naturally-occurring English.   

 
4.1 The Algorithm 
TEDDCLOG uses the following algorithm: 
 

1. User inputs the key 
2. Look up the key in the thesaurus to find 

distractors 
3. Find collocates for the key in its word sketch 

                                                           
3 http://natcorp.ox.ac.uk 

4. Find a collocate which is used with the key but 
not with any distractors (the koc, key-only 
collocate) 

5. Find a short simple sentence containing 
key+koc 

6. Prepare output: blank out key from sentence, 
present key and distractors in random order. 

 
Steps 2-5 each use the web API.  They are described in 
detail below.  
 
4.2  The Corpus 
We currently use UKWaC  (Ferraresi et al 2008, 1.5 
billion words) and may switch to BiWeC.   
 
Size is important for two reasons:   

1. A corpus has to be very large to provide more 
than a handful of sentences for most 
key-collocate pairings.  With more to choose 
from, there is a better chance that there will be 
one which is short and simple.  

2. It is critical that the distractors are not 
acceptable alternatives to the key, in the 
context provided by the sentence.  If the 
corpus is big enough, then the absence of any 
occurrences of the koc with the distractors is 
evidence that they are not acceptable.  

It would be possible to use a far larger corpus than 
UKWaC, by using the web as indexed by Google or 
Yahoo directly.  This could give stronger evidence of 
the non-acceptability of distractors with the koc.  
(Sumita et al (2005) use a method of this kind.)  
However the use of the web in this way raises other 
difficulties as discussed above. 
   
4.3  Worked Example 
We want to test the use of the verb react. The writer 
enters react into the system.   
 
Finding distractors: the Thesaurus Module 
The API call to the thesaurus returns words which 
typically occur in the same context as the search term. 
Table 2 shows the SkE Thesaurus for react. (The table 
reveals that most of the words with similar distribution to 
react relate to the human-interaction uses of the word, 
probably because this is the most frequent kind of use of 
react.)  The three top-ranking list members, respond, 
interact and behave, are noted and retained for use as 
PDs (potential distractors).  
 
Finding the Key-only Collocate (Koc): Sketch 
Differences Module 
The Sketch Engine also provides a “Sketch Difference”  
or sketchdiff display, showing which collocates are 
shared (and “how shared they are”) and which are not, 
between two similar words. Figure 4 shows the sketch 
differences for react and respond.  We see that react 
occurs 232 times with positively as a MODIFIER, and 
respond, 1624 times.  The user can click on the number 
to see the 232, or 1624, concordance lines.   
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. TEDDCLOG System architecture 
 

 
 
react    ukWaC freq = 24778 

Lemma Score Freq 

respond 0.417 114163 

interact 0.305 25685 

behave 0.296 24508 

realise 0.25 110985 

cope 0.247 48313 

adapt 0.245 50930 

listen 0.238 127002 

answer 0.237 105714 

intervene 0.237 14898 

contribute 0.235 137428 

 
Table 2: Distributional thesaurus entry for react. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

react/respond    ukwac freq = 24778/114163  

Common patterns 
react 6.0 4.0 2.0 0 -2.0 -4.0 -6.0 respond  

modifier 
 

7491 24903 

positively 
 

232 1624 

angrily 
 

355 57 

differently 
 

395 320 

appropriately 
 

69 690 

quickly 
 

683 1671 
   

subject 5902 19760 

government 84 585 

people 572 1198 

patient 39 296 

body 177 230 

audience 75 149 
   

 

"react" only patterns 
 modifier 7491 5.8 

violently 119 56.4 

badly 265 54.1 

furiously 55 47.9 

chemically 49 43.4 

adversely 51 37.1    

subject 5902 4.5 

acid 59 27.5 

metal 34 19.5 

character 44 15.4    

 
Figure 4: Sketch Diff for react and respond (truncated). 
 
 

react 
 

Thesaurus 

module 
 

Several metals 

react violently 

with cold water. 

 

Diffs module 

  

Concordance 

module 

 

behave, interact, 

respond 

Text 

processing 

module   

Several metals  ___ 

violently with cold 

water.  

(a) behave (b) react  

(c) realise (d) respond 

behave  

realise 

respond 

metals behave x 

metals respond x  

metals realise x 

metals react √  

 



TEDDCLOG needs collocates that are not shared with 
distractors (kocs).  Candidate kocs can be seen under the 
“react only” patterns.   TEDDCLOG takes the 
high-salience collocates that do not occur with the first 
distractor, applying the condition that the collocate must 
be a correctly spelled English word and not a proper 
name. 
In the simplest case, the first candidate koc does not 
co-occur with any of the three distractors.  In other cases, 
TEDDCLOG either finds new candidate kocs until one is 
found that does not occur with any of the distractors, or, 
depending on parameter settings, finds new distractors 
from the thesaurus that do not occur with a potential koc.  
The process is continued until we have a koc, and set of 
distractors that do not occur with it.  
At this point in the algorithm, we have decided on the 
key and three distractors. We have also established that 
we wish our carrier sentence to include the collocation: 
in our example, metals react. The next step is to 
determine what the carrier sentence will be. 

 
Selection of Carrier Sentence 
The carrier sentence needs to contain metal as subject of 
react.  There are 34 such sentences in UKWaC.  The next 
task is to choose the most suitable for a 
language-teaching, cloze exercise context. 
Many sentences are unsuitable, for a range of reasons.  
For example: 

 
2H 2 O 2(aq ) == 2H 2 O ( l ) + O 2(g ) or a metal 
reacting with acids, and you can study the effects 
of a catalyst e.g. adding Cu 2+ ( aq ) ions to a 
zinc-acid mixture, though I 'm not sure easy it is to 
get good quantitative results for advanced level 
coursework? 

 
Firstly, the sentence is too long, giving the learner work 
to do which is not directly related to the task that the 
exercise assesses.  Secondly, it contains formulae which 
will be incomprehensible to non-chemists.  Another 
example is: 

 
It uses these reactions to explore the trend in 
reactivity in Group 1. The Facts General All of 
these metals react vigorously or even explosively 
with cold water . 

 
Here, the problem is that we have not one sentence but 
two, and a heading and subheading in between. The 
corpus processing has been led astray by the period 
following the 1, interpreting it as part of the token “1.” 
rather than as an end-of-sentence marker, and has also 
failed to mark off the heading (“The facts”) and 
subheading (“General”) as not being part of the 
following sentence. 
Atkins and Rundell (2008) discuss the criteria for good 
examples in dictionary definitions, concluding that such 
examples must be intelligible to learners, avoiding 
difficult lexis and structures, puzzling or distracting 
names, and anaphoric references which cannot be 
understood without access to the wider context.  These 
lexicographical desiderata are equally applicable to the 
selection of carrier sentences for cloze exercises. The 
SkE concordancing software is equipped with a feature 
called GDEX (Good Dictionary Example Extraction: 

Kilgarriff et al, 2008), which ranks sentences extracted 
from corpora according to the following criteria: 

• Sentence length: a sentence between 10 and 
25 words long is preferred, with longer and 
shorter ones penalized.  (Overshort sentences 
may not provide enough context to show the 
user the intended meaning of constituent 
words.) 

• Word frequencies: a sentence is penalized for 
each word that is not amongst the commonest 
17,000 words in the language, with a further 
penalty applied for rare words. 

• Sentences containing pronouns and anaphors 
like this that it or one often fail to present a 
self-contained piece of language which makes 
sense without further context, so sentences 
containing these words are penalized. 

• Sentences where the target collocation is in 
the main clause are preferred (using heuristics 
to guess where the main clause begins and 
ends, as we do not yet use a parser). 

• Whole sentences – identified as beginning 
with a capital letter and ending with a full stop, 
exclamation mark, or question mark, are 
preferred. 

• Sentences with ‘third collocates’, that is, 
words that occurred with high salience in 
sentences containing the key and koc, are 
preferred.  This will increase the chances that 
the context in which the collocation is shown 
is typical for the collocation. 

• Sentences with more than two or three capital 
letters, and more than two or three punctuation 
marks and other non-alphanumeric characters, 
are penalized.  This turns out to be a simple 
way of setting aside most aberrant and 
junk-filled ‘sentences’. 

 
GDEX sorts the concordance lines for any SkE search so 
that the ‘best’ sentences are presented first. The 
sentences which are most likely to be selected for 
dictionary examples or cloze exercises appear at the 
beginning of the concordance display. Unwanted 
sentences, including web noise, are relegated to the end 
of the concordance so a human user need not waste time 
looking at them. 
TEDDCLOG uses the API with GDEX switched on to find 
the best sentence containing the key+koc collocation, 
here metal as subject of react.  
 
Current status is that we have a prototype system 
(Smith et al 2009) and are developing a proposal in 
collaboration with a testing organisation, to turn it into 
an industrial-strength system. 

5 Relation to CLARIN 
The EU Project CLARIN4 aims to establish research 
infrastructure for language technology, based on web 
services, and we have approached CLARIN regarding 
the role that the services discussed here might play. 
However it seems that CLARIN’s perspective is on a 
longer term and more ambitious plane, with emphasis 

                                                           
4 http://www.clarin.eu 



on standards and community-wide integration, rather 
than currently-available modest services as here. 

6 Summary 
 
We have made the case for ‘corpora by web services’ 
with NLP researchers using corpora without needing to 
store them on their local machines or expend effort on 
building or maintaining them or associated software.  
In this way researchers will be able to make use of 
larger and better corpora than is otherwise possible.  
The Sketch Engine is a very fast and flexible corpus 
query tool, into which many large corpora for many 
languages are already loaded, with a web API, so we 
are already set for ‘Corpora by Web Services’ and 
indeed we already have some users developing NLP 
applications in this way.  
 
For English, we are developing two new resources with 
‘Corpora by Web Services’ in mind: firstly BiWeC, 
which moves the scale of resource we offer up by a 
scale of magnitude, and second, the New Model Corpus, 
with which we hope to update the BNC as a reference 
corpus for English. All being well, these two projects 
will come together in a very large, very well marked up 
corpus for English which is fully accessible by web 
API.  Using a corpus will not merely be like picking up 
a hire car, it will be like picking up a Ferrari. 
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