
Corpora by Web Services

Adam Kilgarriff
Lexical Computing Ltd

Brighton, UK
E-mail: adam@lexmasterclass.com

Abstract

Corpora are large objects and querying them efficiently is non-trivial. There are substantial costs to building them, storing them,
maintaining them, and building and maintaining software to access them. We propose a model where this work is done by a corpus
specialist and NLP systems then use corpora via web services. Our corpus tool is fast, even for billion-word corpora, and offers a wide
range of queries via its web API. We have large corpora available for twenty-six languages, and are experts in preparing large corpora
from the web, with particular expertise in web text cleaning and de-duplication. We regularly increase our coverage of the world’s
languages via our ‘corpus factory’ programme. For English, we are building corpora that are both bigger and more richly marked up
than others available. We present a case study of a current project using the Sketch Engine, via its web API, to automatically draft
‘fill-the-gap’ test items for language testing. The combination of the web services model, the corpora, and the tools, will allow many
NLP researchers to use bigger and better corpora in more sophisticated ways than would otherwise be possible.

1. Barriers to entry
In the days of rule-based NLP, starting a PhD was easy.
The student could write a few grammar rules, lexical
entries and example sentences, and all the technology
required was a prolog system.

Since the advent of empirical methods, it is harder. Now
the student needs a corpus and tools to access it. Before
embarking on their research question - perhaps about
syntax, or parsing, or anaphora, or discourse structure -
they must first review the different resources they might
use, or work out if they must build their own, and then
cross the technical and administrative hurdles to building
it or acquiring it. They must then either write their own
code for accessing it or install and become expert on
somebody else's tool. Any output for the first few months
is likely to be dominated by aspects of the data or tool that
they had not anticipated rather than linguistic ones, and it
is all too likely that they start feeling their thesis is being
sidetracked into corpora and corpus tools. If they do not
have the programming skills or technical support to clear
these hurdles, they are likely to become dispirited or to
shy away from the question that first motivated them and
to switch to one which makes use of corpora in simpler
ways, though they may then forever be dogged by the
anxiety that their research will not stand up to scrutiny by
the researcher, otherwise like them, but who did have the
support or computational skill to `do everything properly'.

Might it be possible to use corpora without all this
overhead, like a driver collecting a hire car?

We believe not only that it is possible (and that we already
have a service offering what is required), but that it is
likely to improve the quality of research as energies are
not wasted on non-specialist, mediocre, corpus-
preparation and corpus-accessing, but are directed at the
topic that motivated the researcher.

2. The Sketch Engine
The Sketch Engine is a corpus query tool. It has been
widely used for lexicography, by clients including Oxford
University Press, Cambridge University Press, Collins,
Macmillan and FrameNet, and for linguistic and language
technology teaching and research at universities. Corpora
for many languages have been installed. It is fast,
responding promptly for most queries for billion-word
corpora. It offers all standard corpus query functions:
concordancing, sorting and sampling of concordances,
wordlists and collocates according to a range of
parameters, full regular-expression searching, subcorpus
specification and searching on subcorpora. It also offers
some non-standard ones:

• word sketches: one-page summaries of a word’s
grammatical and collocational behaviour, see
Figure 1

• a distributional thesaurus
• keyword lists which identify the distinctive

words of a subcorpus: see Figure 2.

The basic input is a corpus, preferably lemmatised and
part-of-speech tagged. For the word sketches and
thesaurus, either the corpus must already be parsed, or
another input is required: a shallow grammar, written as a
regular expression over words and POS-tags, in which
each grammatical relation to appear in the word sketch is
defined. For a computational linguist with a knowledge of
the language in question, preparing a basic grammar is not
a large task.

2.1 The Sketch Engine Web Service and API
Lexical Computing Ltd., the owner of the Sketch Engine,
provides a web service which gives easy access to corpora.
Users can start using the corpus for their question directly:
the user interface is simple and there is no software to
install.

For four years now there has been a Web API for the
Sketch Engine. It is written in JSON and is designed for
easy integration into tools written in Java, Python, Perl etc.
It covers the core functionality of the Sketch

web BiWeC freq = 787440
object_of 33396
surf 1199 9.79
browse 851 8.33
weave 629 8.21
host 1487 7.86
spin 523 7.8
base 4884 7.71
search 1386 7.62
crawl 166 6.66
scour 116 6.47
chat 256 6.3
untangle 83 6.25
interconnect 75 5.91

and/or 18695
clipart 503 9.48
software 2083 6.16
correu 36 5.95
spider 68 5.11
print 372 5.05
desktop 115 4.98
email 509 4.97
transience 19 4.97
designer 213 4.87
gopher 19 4.64
telnet 19 4.62
multimedia 63 4.62

pp_of-i 10574
deceit 198 7.86
intrigue 176 7.54
spider 95 5.79
lie 247 5.78
interconnection 31 5.66
deception 67 5.56
interrelationship 21 5.38
quill 20 5.34
interdependence 23 5.26
datum 2007 5.0
corruption 71 3.99
trust 126 3.98

modifies 649632
site 264048 11.04
page 97315 10.12
browser 19649 9.36
server 14586 8.73
design 14395 7.96
cam 4617 7.77
designer 5430 7.68
standard 7949 7.3
developer 4218 7.29
application 9633 7.11
address 5487 6.99
interface 3077 6.64

Figure 1: Word sketch for the English noun web, drawn from the 5.5b BiWeC corpus, based on 787,440 occurrences

(truncated to fit.) The first figure for each collocation is the frequency count, the second is the salience score (Logdice, see
help pages at http://www.sketchengine.co.uk). One can sort by either. Other options include ‘more data’, ‘less data’ and

clustering of collocates. Clicking on the frequency count gives a concordance of the instances.

 new_model_corpus:speech new_model_corpus

lemma Freq ARF ARF/mill Freq ARF ARF/mill Score

sir 6559 537.5 560.0 8641 1365.5 24.5 16.5

Yeah 12839 1015.8 1058.3 17703 3342.1 60.0 15.3

hey 9294 781.6 814.3 12371 2709.5 48.7 14.1

Hello 4623 411.1 428.3 6574 1392.0 25.0 12.5

okay 9512 709.7 739.4 14043 2997.1 53.8 11.7

fuck 7720 456.6 475.7 11540 1750.3 31.4 11.7

hi 3309 291.0 303.1 4449 961.2 17.3 11.5

shit 4607 370.6 386.1 7266 1554.7 27.9 10.4

No 12340 1097.5 1143.4 20342 5795.3 104.1 10.1

Huh 2667 234.5 244.4 3708 903.8 16.2 9.7

uh 3106 219.2 228.4 4439 828.3 14.9 9.6

oh 17684 1498.8 1561.5 31159 9048.8 162.5 9.1

Bye 1145 102.6 106.9 1284 196.9 3.5 8.6

bye 1233 110.8 115.4 1529 320.0 5.7 8.0

bitch 1643 146.3 152.4 2495 629.8 11.3 7.6

sorry 8127 726.5 756.8 15558 5234.7 94.0 7.4

yes 18823 1667.0 1736.8 37498 12833.4 230.4 7.3

darling 1364 119.9 124.9 1971 495.4 8.9 7.1

honey 1588 140.9 146.8 2689 681.6 12.2 7.1

you 336328 30020.7 31276.7 759009 251027.5 4507.6 6.9

Fig. 2. Top keywords of spoken component of New Model Corpus, as computed and presented in the Sketch Engine, with

simple-maths parameter of 10. Component parts (won, don) of contracted forms removed.

Engine: one can submit queries which return
concordances, word sketches, word lists and thesaurus
entries.1

2.2 Corpora available in the Sketch Engine
We specialise in large general-language corpora (as
required for lexicography). We have
publicly-accessible corpora of over 5m words for
twenty-six languages (including all major world
languages), with over 1 billion words for three: see
Table 1.2 We have a ‘Corpus Factory’ (Kilgarriff et al
2010) programme for adding to the list of languages in
our repertoire by preparing 100m word corpora from
web sources, using BootCat methods (Baroni and
Bernardini 2004).

Arabic (MSA) 174 Persian 6
Chinese (simp and trad) 456 Portuguese 66
Czech 800 Romanian 53
Dutch 128 Russian 188
English 5,508 Slovak 536
French 126 Slovene 738
German 1,627 Spanish 117
Greek 149 Swedish 114
Hindi 31 Telugu 5
Indonesian 102 Thai 108
Irish 34 Vietnamese 174
Italian 1,910 Welsh 63
Japanese 409
Norwegian 95

Table 1: Languages, and the largest corpus available for
that language in the Sketch Engine (April 2010, figures

in millions of words+punctuation)

3 The Merits of Big, High-Quality Corpora
Since Banko and Brill (2004), it is entirely clear that
corpus-based NLP methods tend to perform better, the
bigger the corpus. This is one reason for wanting a big
corpus. Another is simply to have ample data even for
rare phenomena. A third is that a very large corpus will
have many large subcorpora. If, for example, we wish
to look at Business English, or medical English, or
informal English, we can build a classifier to
distinguish text of this type from others, and then apply
the classifier to a very big corpus, which will then give
a subcorpus large enough to support research and
model-building for the specific variety.

Corpus quality is less discussed than corpus size. It is
harder to define and measure. Also, if people become
aware of bad data in their corpus, they are more likely
to remove it than announce it. Data cleaning is not
high-status work, and papers are likely to pass over it
lightly at best, either ignoring the failings of the dataset
or presenting results after obvious anomalies have been

1 Full documentation at
http://trac.sketchengine.co.uk/wiki/SkE/Methods/index
2 We collaborate with numerous groups, and some
corpora were built by others, in particular Serge Sharoff
at the University of Leeds, UK, and Marco Baroni,
Silvia Bernardini, Adriano Ferraresi and colleagues at
the Universities of Bologna and Trento, Italy.

excluded. Thus a paper which describes work with a
vast web corpus of 31 million web pages devotes just
one paragraph to the corpus development process, and
mentions de-duplication and language-filtering but no
other cleaning (Ravichandran, Pantel, and Hovy 2005,
section 4). Another paper using the same corpus notes,
in a footnote, “as a preprocessing step we hand-edit the
clusters to remove those containing non-English words,
terms related to adult content, and other
webpage-specific clusters” (Snow, Jurafsky, and Ng
2006).

Academic papers do not often present results which
compare performance on ‘better’ and ‘worse’ corpora.
Nonetheless, few would dispute the near-tautology that
better corpora are likely to give better results. There
are many forms that bad data in corpora can take. They
include duplicates, navigation bars and other web
material, long lists, logfiles, code, texts in the wrong
language, and language-like computer-generated spam.
(There are other issues about texts in the correct
language but which introduce unwanted biases because
there are so many of them. Almost all
general-language corpora have this problem, at least
from some users’ perspective.)

We are corpus specialists. We have explored in depth
the issues of web data cleaning (Baroni et al 2008),
character encoding (Kilgarriff et al 2010) and
de-duplication of large datasets (Pomikalek et al 2009).
People accessing our corpora will very often be
accessing bigger and better corpora than would
otherwise be possible.

3.1 The Google/Yahoo/Bing option
A number of researchers have followed the lead of
Grefenstette (1999) and gathered data through
extensive querying of one of the main search engines
(in Grefenstette’s case, Altavista, now usually Google,
Yahoo or Bing); see for example Keller and Lapata
(2003), Nakov and Hearst (2005), Nakov (2008). The
search engines access far more data than we do even in
our largest corpora: as against our 5.5 billion, Google
indexes at least a trillion words of English. Search
engines can be used as a corpus query tool, and if size
of data is the overriding consideration, we can offer no
alternative. However there are numerous
disadvantages to using Google, Yahoo or Bing in this
way:

• they are not linguistically aware so do not
permit e.g., searches for lemmas

• the query syntax is limited (and subject to
change without notice)

• they limit the number of queries one can make
• they limit the number of results per query
• results are sorted according to a scheme which

bears no relation to a linguist’s wish to see a
random sample

• results are not replicable.

(For a full critique, see Kilgarriff 2007.) Using the
search engines is a solution with many downsides: if a
corpus of 5.5 billion words (for English) is big enough
(and for very many, though by no means all, kinds of

research it will be) then there are many advantages to
using a specialised service for linguists, such as the
Sketch Engine, rather than a search engine.

3.2 New English Corpora 1: BiWeC
BiWeC (Big Web Corpus, Pomikalek et al 2009) is a
response to the ongoing need for bigger corpora, and to
bridging the gap between corpora that are available in
corpus query tools and the web as available via search
engine indexes. Our target is 20b words, perhaps 1% of
the non-duplicate textual data indexed by Google (see
Kilgarriff 2007 for more on relative sizes of large
corpora and Google indexes). Our work here has
focused on, first, efficient crawling, and then,
high-accuracy data cleaning and de-duplication. At
time of writing, 5.5 b words have been fully cleaned,
de-duplicated, lemmatised, POS-tagged, and loaded
into the Sketch Engine.

3.3 New English corpora 2: New Model Corpus
The British National Corpus3 has been very widely
used across linguistics and language technology, and
has often been held up as a model for how to design a
corpus. However it was designed in the 1980s, before
the web existed, and the model, as well as the data, is
out of date (for the case in full see Kilgarriff et al 2007).

The next question is: what does a contemporary model
corpus look like? The New Model Corpus is a response,
comprising 100m words gathered entirely from the web
but with proportions of different text types not unlike
those of the BNC. It is available for research, and we
plan to annotate it as a community-wide exercise, with
all NLP researchers invited to download the data,
process it with their tools, and return their annotations
to us. We shall then integrate the annotations to give a
multi-annotated corpus which will also be available for
research.

4 A Case Study: TEDDCLOG
TEDDCLOG (Taiwan English Data Driven CLOze test
Generation) is a system which drafts fill-the-gap
exercises (sometimes known as cloze tests) for learners:
the learner is given a sentence in which one word (the
key) has been replaced with a gap, and a choice of four
or five words (the key plus three or four distractors) to
fill the gap. Exercises of this kind are popular with
teachers of English and also with language testing
organisations. However the tests are usually based on
invented sentences, created by human ‘test item
writers’. There is a now well-chronicled tendency for
there to be a mismatch between the language of
invented sentences and that found in corpora of
naturally-occurring English.

4.1 The Algorithm
TEDDCLOG uses the following algorithm:

1. User inputs the key
2. Look up the key in the thesaurus to find

distractors
3. Find collocates for the key in its word sketch

3 http://natcorp.ox.ac.uk

4. Find a collocate which is used with the key but
not with any distractors (the koc, key-only
collocate)

5. Find a short simple sentence containing
key+koc

6. Prepare output: blank out key from sentence,
present key and distractors in random order.

Steps 2-5 each use the web API. They are described in
detail below.

4.2 The Corpus
We currently use UKWaC (Ferraresi et al 2008, 1.5
billion words) and may switch to BiWeC.

Size is important for two reasons:

1. A corpus has to be very large to provide more
than a handful of sentences for most
key-collocate pairings. With more to choose
from, there is a better chance that there will be
one which is short and simple.

2. It is critical that the distractors are not
acceptable alternatives to the key, in the
context provided by the sentence. If the
corpus is big enough, then the absence of any
occurrences of the koc with the distractors is
evidence that they are not acceptable.

It would be possible to use a far larger corpus than
UKWaC, by using the web as indexed by Google or
Yahoo directly. This could give stronger evidence of
the non-acceptability of distractors with the koc.
(Sumita et al (2005) use a method of this kind.)
However the use of the web in this way raises other
difficulties as discussed above.

4.3 Worked Example
We want to test the use of the verb react. The writer
enters react into the system.

Finding distractors: the Thesaurus Module
The API call to the thesaurus returns words which
typically occur in the same context as the search term.
Table 2 shows the SkE Thesaurus for react. (The table
reveals that most of the words with similar distribution to
react relate to the human-interaction uses of the word,
probably because this is the most frequent kind of use of
react.) The three top-ranking list members, respond,
interact and behave, are noted and retained for use as
PDs (potential distractors).

Finding the Key-only Collocate (Koc): Sketch
Differences Module
The Sketch Engine also provides a “Sketch Difference”
or sketchdiff display, showing which collocates are
shared (and “how shared they are”) and which are not,
between two similar words. Figure 4 shows the sketch
differences for react and respond. We see that react
occurs 232 times with positively as a MODIFIER, and
respond, 1624 times. The user can click on the number
to see the 232, or 1624, concordance lines.

Figure 3. TEDDCLOG System architecture

react ukWaC freq = 24778

Lemma Score Freq

respond 0.417 114163

interact 0.305 25685

behave 0.296 24508

realise 0.25 110985

cope 0.247 48313

adapt 0.245 50930

listen 0.238 127002

answer 0.237 105714

intervene 0.237 14898

contribute 0.235 137428

Table 2: Distributional thesaurus entry for react.

react/respond ukwac freq = 24778/114163

Common patterns
react 6.0 4.0 2.0 0 -2.0 -4.0 -6.0 respond

modifier

7491 24903

positively

232 1624

angrily

355 57

differently

395 320

appropriately

69 690

quickly

683 1671

subject 5902 19760

government 84 585

people 572 1198

patient 39 296

body 177 230

audience 75 149

"react" only patterns
 modifier 7491 5.8

violently 119 56.4

badly 265 54.1

furiously 55 47.9

chemically 49 43.4

adversely 51 37.1

subject 5902 4.5

acid 59 27.5

metal 34 19.5

character 44 15.4

Figure 4: Sketch Diff for react and respond (truncated).

react

Thesaurus

module

Several metals

react violently

with cold water.

Diffs module

Concordance

module

behave, interact,

respond

Text

processing

module

Several metals ___

violently with cold

water.

(a) behave (b) react

(c) realise (d) respond

behave

realise

respond

metals behave x

metals respond x

metals realise x

metals react √

TEDDCLOG needs collocates that are not shared with
distractors (kocs). Candidate kocs can be seen under the
“react only” patterns. TEDDCLOG takes the
high-salience collocates that do not occur with the first
distractor, applying the condition that the collocate must
be a correctly spelled English word and not a proper
name.
In the simplest case, the first candidate koc does not
co-occur with any of the three distractors. In other cases,
TEDDCLOG either finds new candidate kocs until one is
found that does not occur with any of the distractors, or,
depending on parameter settings, finds new distractors
from the thesaurus that do not occur with a potential koc.
The process is continued until we have a koc, and set of
distractors that do not occur with it.
At this point in the algorithm, we have decided on the
key and three distractors. We have also established that
we wish our carrier sentence to include the collocation:
in our example, metals react. The next step is to
determine what the carrier sentence will be.

Selection of Carrier Sentence
The carrier sentence needs to contain metal as subject of
react. There are 34 such sentences in UKWaC. The next
task is to choose the most suitable for a
language-teaching, cloze exercise context.
Many sentences are unsuitable, for a range of reasons.
For example:

2H 2 O 2(aq) == 2H 2 O (l) + O 2(g) or a metal
reacting with acids, and you can study the effects
of a catalyst e.g. adding Cu 2+ (aq) ions to a
zinc-acid mixture, though I 'm not sure easy it is to
get good quantitative results for advanced level
coursework?

Firstly, the sentence is too long, giving the learner work
to do which is not directly related to the task that the
exercise assesses. Secondly, it contains formulae which
will be incomprehensible to non-chemists. Another
example is:

It uses these reactions to explore the trend in
reactivity in Group 1. The Facts General All of
these metals react vigorously or even explosively
with cold water .

Here, the problem is that we have not one sentence but
two, and a heading and subheading in between. The
corpus processing has been led astray by the period
following the 1, interpreting it as part of the token “1.”
rather than as an end-of-sentence marker, and has also
failed to mark off the heading (“The facts”) and
subheading (“General”) as not being part of the
following sentence.
Atkins and Rundell (2008) discuss the criteria for good
examples in dictionary definitions, concluding that such
examples must be intelligible to learners, avoiding
difficult lexis and structures, puzzling or distracting
names, and anaphoric references which cannot be
understood without access to the wider context. These
lexicographical desiderata are equally applicable to the
selection of carrier sentences for cloze exercises. The
SkE concordancing software is equipped with a feature
called GDEX (Good Dictionary Example Extraction:

Kilgarriff et al, 2008), which ranks sentences extracted
from corpora according to the following criteria:

• Sentence length: a sentence between 10 and
25 words long is preferred, with longer and
shorter ones penalized. (Overshort sentences
may not provide enough context to show the
user the intended meaning of constituent
words.)

• Word frequencies: a sentence is penalized for
each word that is not amongst the commonest
17,000 words in the language, with a further
penalty applied for rare words.

• Sentences containing pronouns and anaphors
like this that it or one often fail to present a
self-contained piece of language which makes
sense without further context, so sentences
containing these words are penalized.

• Sentences where the target collocation is in
the main clause are preferred (using heuristics
to guess where the main clause begins and
ends, as we do not yet use a parser).

• Whole sentences – identified as beginning
with a capital letter and ending with a full stop,
exclamation mark, or question mark, are
preferred.

• Sentences with ‘third collocates’, that is,
words that occurred with high salience in
sentences containing the key and koc, are
preferred. This will increase the chances that
the context in which the collocation is shown
is typical for the collocation.

• Sentences with more than two or three capital
letters, and more than two or three punctuation
marks and other non-alphanumeric characters,
are penalized. This turns out to be a simple
way of setting aside most aberrant and
junk-filled ‘sentences’.

GDEX sorts the concordance lines for any SkE search so
that the ‘best’ sentences are presented first. The
sentences which are most likely to be selected for
dictionary examples or cloze exercises appear at the
beginning of the concordance display. Unwanted
sentences, including web noise, are relegated to the end
of the concordance so a human user need not waste time
looking at them.
TEDDCLOG uses the API with GDEX switched on to find
the best sentence containing the key+koc collocation,
here metal as subject of react.

Current status is that we have a prototype system
(Smith et al 2009) and are developing a proposal in
collaboration with a testing organisation, to turn it into
an industrial-strength system.

5 Relation to CLARIN
The EU Project CLARIN4 aims to establish research
infrastructure for language technology, based on web
services, and we have approached CLARIN regarding
the role that the services discussed here might play.
However it seems that CLARIN’s perspective is on a
longer term and more ambitious plane, with emphasis

4 http://www.clarin.eu

on standards and community-wide integration, rather
than currently-available modest services as here.

6 Summary

We have made the case for ‘corpora by web services’
with NLP researchers using corpora without needing to
store them on their local machines or expend effort on
building or maintaining them or associated software.
In this way researchers will be able to make use of
larger and better corpora than is otherwise possible.
The Sketch Engine is a very fast and flexible corpus
query tool, into which many large corpora for many
languages are already loaded, with a web API, so we
are already set for ‘Corpora by Web Services’ and
indeed we already have some users developing NLP
applications in this way.

For English, we are developing two new resources with
‘Corpora by Web Services’ in mind: firstly BiWeC,
which moves the scale of resource we offer up by a
scale of magnitude, and second, the New Model Corpus,
with which we hope to update the BNC as a reference
corpus for English. All being well, these two projects
will come together in a very large, very well marked up
corpus for English which is fully accessible by web
API. Using a corpus will not merely be like picking up
a hire car, it will be like picking up a Ferrari.

7 References

Banko, Michele, and Eric Brill 2001. Scaling to Very

Very Large Corpora for Natural Language
Disambiguation. Proc ACL. Toulouse, France.

Baroni, Marco and Silvia Bernardini 2004. BootCaT:
Bootstrapping Corpora and Terms from the Web. Proc
LREC, Gran Canaria.

Baroni, Marco, Francis Chantree, Adam Kilgarriff and
Serge Sharoff 2008. CleanEval: a competition for
cleaning web pages. Proc LREC. Marrakech,
Morocco.

Ferraresi, Adriano, Eros Zanchetta, Silvia Bernardini
and Marco Baroni 2008. Introducing and evaluating
UKWaC, a very large web-derived corpus of
English . Proc. 4th WAC workshop, LREC,
Marrakech, Morocco.

Grefenstette, Gregory. 1999. The WWW as a resource
for example-based MT tasks. In ASLIB Translating
and the Computer Conference, London.

Keller, Frank and Mirella Lapata. 2003. Using the web to
obtain frequencies for unseen bigrams.
Computational Linguistics, 29(3):459–484.

Kilgarriff, Adam 2007. Googleology is Bad
Science. Computational Linguistics 33 (1):
147-151.

Kilgarriff, Adam, Sue Atkins and Michael Rundell
2007. BNC Design Model Past its Sell-by. Proc.
Corpus Linguistics, Birmingham, UK.

Kilgarriff, Adam, Milos Husák, Katy McAdam,
Michael Rundell, Pavel Rychlý 2008. GDEX:
Automatically finding good dictionary examples in
a corpus. Proc EURALEX, Barcelona, Spain.

Kilgarriff, Adam, Siva Reddy, Jan Pomikalek 2010. A

Corpus Factory for many languages. Proc LREC,
Malta.

Nakov, P. 2008. Noun compound interpretation using
paraphrasing verbs: Feasibility study. Proc. Artificial
Intelligence: Methodology, Systems, Applications
(AIMSA'08).

Nakov, Preslav and Marti Hearst. 2005. Search engine
statistics beyond the n-gram: Application to noun
compound bracketing. Proc. Computational Natural
Language Learning (CoNLL-2005), pages 17–24,
Ann Arbor, Michigan.

Pomikalek, Jan, Pavel Rychlý and Adam Kilgarriff
2009. Scaling to Billion-plus Word Corpora.
Advances in Computational Linguistics. Special
Issue of Research in Computing Science Vol 41,
Mexico City.

Ravichandran, Deepak, Patrick Pantel, and Eduard
Hovy. 2005. Randomized algorithms and NLP:
Using locality sensitive hash functions for high speed
noun clustering. In Proc. ACL, Ann Arbour,
Michigan, USA.

Smith, Simon, Adam Kilgarriff, Scott Sommers, Gong
Wen-liang, Wu Guang-zhong Automatic Cloze
Generation for English Proficiency Testing Proc.
LTTC International Conference on Language
Teaching and Testing, Taipei, Taiwan.

Snow, Rion, Daniel Jurafsky, and Andrew Ng. 2006.
Semantic taxonomy induction from heterogeneous
evidence. In Proceedings of ACL, Sydney

Sumita, E., Sugaya, F. and Yamamoto, S. 2005.
Measuring Non-native Speakers’ Proficiency of
English by Using a Test with
Automatically-Generated Fill-in-the-Blank
Questions. Proc. 2nd Workshop on Building
Educational Applications using NLP, Ann Arbor.

