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Abstract

We study the performance of two representations of word
meaning in learning noun-modifier semantic relations. One
representation is based on lexical resources, in particular
WordNet, the other – on a corpus. We experimented with de-
cision trees, instance-based learning and Support Vector Ma-
chines. All these methods work well in this learning task. We
report high precision, recall and F-score, and small variation
in performance across several 10-fold cross-validation runs.
The corpus-based method has the advantage of working with
data without word-sense annotations and performs well over
the baseline. The WordNet-based method, requiring word-
sense annotated data, has higher precision.

Introduction
In understanding a text, it is essential to recognize rela-
tions among occurrences1, entities and their attributes, rep-
resented at the surface as verbs, nouns and their modifiers.
Semantic relations describe interactions between a noun and
its modifiers (noun-modifier relations), a verb and its argu-
ments (case relations/semantic roles), and two clauses. In
the past few years we have seen the Natural Language Pro-
cessing (NLP) community’s renewed interest in analyzing
semantic relations especially between verbs and their argu-
ments (Baker, Fillmore, & Lowe 1998), (Kipper, Dang, &
Palmer 2000), nouns and their modifiers (Rosario & Hearst
2001). Semantic role labelling competitions2 also seem to
increase the attractiveness of this topic.

In this paper we consider a specific supervised learning
task: assign semantic relations to noun-modifier pairs in
base noun phrases (base NPs), composed only of a noun
and its modifier. To identify such noun-modifier relations
we can rely only on semantic and morphological informa-
tion about words themselves. For example, in the base NPs
iron gate, brick house, plastic container: iron, brick, plas-
tic are substances, and gate, house, container are artifacts;
this suggests a MATERIAL relation in these pairs. On the
other hand, analyzing case relation or clause-level relations
is assisted by prepositions, subordinators, coordinators and
maybe more elaborate syntactic structures.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

∗This work was done at the University of Ottawa.
1Occurrence encompasses all types of events, actions, activi-

ties, processes, states and accomplishments (Allen 1984)
2CONLL 2004, 2005 – Semantic Role Labelling shared task

http://www.lsi.upc.edu/ srlconll/ .

We experiment with two methods of representing the
words in a base NP, to be used in Machine Learning (ML)
experiments for learning semantic relations between nouns
and their modifiers. One method is based on features ex-
tracted from WordNet, which was designed to capture, de-
scribe, and relate word senses. In brief, we use hypernyms
to describe in more and more general terms the sense of
a word in a pair. The other method is based on contex-
tual information extracted from corpora. Contexts are use-
ful for determining word senses, as reflected in research on
word-sense disambiguation using a window of words sur-
rounding the target word (starting with (Yarowsky 1995),
and more recently (Purandare & Pedersen 2004)). We use
grammatical collocations3 (as opposed to proximity-based
co-occurrences) extracted from the British National Corpus,
to describe each word in a pair. We compare the learning
results produced by using these two types of word sense de-
scriptions with the results obtained by (Turney & Littman
2003) and (Turney 2005), who used a paraphrase method to
describe the pair as a whole.

The data we work with consist of noun-modifier pairs la-
belled with 30 fine-grained semantic relations, grouped into
five relation classes. Experiments presented in this paper are
based on the five-class coarse-grained grouping.

The corpus-based method gives precision, recall and F-
scores well above the baseline (discussed in the “Experi-
mental setup and results” section), and it works on data with-
out word-sense annotations. The method based on WordNet
gives results with higher precision, but requires word-sense
annotated data.

The paper continues with related work on learning noun-
modifier relations, description of the data and the represen-
tations used, presentation of the experimental setup and the
results, and concludes with a discussion.

Related Work
We focus on methods that analyze and learn semantic rela-
tions in noun-phrases.

Levi (1978) analyzes the formation of nominal com-
pounds. She identifies 9 recoverable deletable predicates
(RDPs): be, cause, have, make, use, about, for, from, in,
which, when erased from a more complex expression, gen-
erate a noun phrase. Levi writes that relations expressed by
the RDPs may be universal, because from a semantic point

3Grammatical collocations are collocates that appear with the
target word in a grammatical relation, such as subject, object,
prepositional complement (Kilgarriff et al. 2004).
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of view they appear to be quite primitive. Different seman-
tic relations may be associated with each RDP. For example:
cause – causes/is caused by; have – possession/possessor;
make – physically producing/material.

Berland & Charniak (1999) and Hearst (1992) work with
specific relations, part of and type of respectively. The Au-
tomatic Content Extraction project is a research program in
information extraction that focuses on detecting specific re-
lations (such as employer-organization, agent-artifact) be-
tween seven types of entities (such as person, organization,
facility) in texts (Zhao & Grishman 2005). Several types
of information – lexical, grammatical and contextual – are
combined using kernel methods.

Vanderwende (1994) uses hand-crafted rules and a dictio-
nary built from texts to find clues about the semantic rela-
tions in which a word may be involved. This was tested with
97 pairs extracted from the Brown corpus, with an accuracy
of 52%.

Several systems use lexical resources (domain-specific
like MeSH or general like WordNet or Roget’s Thesaurus)
to find the appropriate level of generalization for words in a
pair, so that words linked by different relations are properly
separated.

Rosario & Hearst (2001) learn noun-modifier semantic re-
lations in a medical domain, using neural networks. The list
of 13 relations is tailored to the application domain. Rosario,
Hearst, & Fillmore (2002), continuing that research, look
manually for rules which classify correctly noun compounds
in the medical domain, based on the MeSH lexical hierar-
chy. The data are extracted automatically from biomedical
journal articles, and sampled for manual analysis. MeSH is
traversed top-down to find a level at which the noun com-
pounds in different relations are properly separated.

Lauer (1995) maps words in noun compounds onto cat-
egories in Roget’s Thesaurus, in order to find probabilities
of occurrence of certain noun compounds and their para-
phrases. There is no automatic process to find the best level
of generalization. Nastase & Szpakowicz (2003) use the
hypernym/hyponym structure of WordNet, and Roget’s The-
saurus, to automatically find the generalization level in these
resources that best describe each semantic relation. Several
machine learning methods are used in analyzing 30 semantic
relations. Girju et al. (2005) also use WordNet and the gen-
eralization/specialization of word senses, in the task of noun
compound interpretation. Barker & Szpakowicz (1998) use
a memory-based process to assign semantic relations to a
new noun phrase, based on previously stored examples. The
distance metric employs identity of one or both of the words,
and the connective between them (usually a preposition).

Turney & Littman (2003) and Turney (2005) use para-
phrases as features to analyze noun-modifier relations. Para-
phrases express more overtly the semantic relation between
a noun and its modifier. The hypothesis, corroborated by
the reported experiments, is that pairs which share the same
paraphrases belong to the same semantic relation.

Turney & Littman (2003) use a set of 64 joining terms
which may appear between the two words in a noun phrase
(in the, at the, because, such that, ...). For each head noun-
modifier (H-M) pair in the dataset, and for each joining term
J , a query to Alta Vista gave the frequency of the phrases
HJM and MJH . The 128 frequency counts were grouped
together with the associated semantic relation in a vector that
described each noun-modifier pair, and then an ML experi-
ment identified the joining terms that indicate a particular

semantic relation, using a 2-nearest-neighbour algorithm.
This has been generalized in Turney (2005) using what

he calls Latent Relational Analysis (LRA). For each word
in a dataset of pairs, Lin’s thesaurus (Lin 1998) gives a set
of possible synonyms. All original pairs and pairs generated
from synonyms are used to mine a corpus for paraphrases.
All paraphrases are gathered and a few thousand of the most
frequent ones are selected. The selected paraphrases, the
original word pairs and the synonym pairs are used to build
an incidence matrix, whose dimensionality is reduced using
singular value decomposition (Landauer & Dumais 1997).
Similarity between pairs combines scores for similarity be-
tween the original word pair and pairs built using synonyms.

Because we use the same data as Turney & Littman
(2003) and Turney (2005), we compare the results of
learning noun-modifier relations using WordNet-based and
corpus-based representations, with the results obtained us-
ing paraphrase-based information.

Data and Representations
Lists of semantic relations in use range from general, as
the lists in PropBank (Palmer, Gildea, & Kingsbury 2005)
and NomBank (Myers et al. 2004), to more and more spe-
cific, as in VerbNet (Kipper, Dang, & Palmer 2000) and
FrameNet (Baker, Fillmore, & Lowe 1998), to domain-
specific (Rosario & Hearst 2001). The data we use consist
of 600 noun-modifier pairs, tagged with 30 semantic rela-
tions, grouped into 5 classes of relations by general similar-
ity (Barker 1998), (Nastase & Szpakowicz 2003), (Turney &
Littman 2003):

1. CAUSAL groups relations enabling or opposing an occur-
rence. Examples (H denotes the head of a base NP, M
denotes the modifier):

cause - H causes M: flu virus;
effect - H is the effect (was caused by) M: exam anxiety;
purpose - H is for M: concert hall;

2. PARTICIPANT groups relations between an occurrence
and its participants or circumstances. Examples:

agent - M performs H: student protest;
object - M is acted upon by H: metal separator;
beneficiary - M benefits from H: student discount;

3. SPATIAL groups relations that place an occurrence at an
absolute or relative point in space.Examples:

direction - H is directed towards M: outgoing mail;
location - H is the location of M: home town;
location at - H is located at M: desert storm;

4. TEMPORAL groups relations that place an occurrence at
an absolute or relative point in time. Examples:

frequency - H occurs every time M occurs: weekly game;
time at - H occurs when M occurs: morning coffee;
time through - H existed while M existed: 2-hour trip;

5. QUALITY groups the remaining relations between a verb
or noun and its arguments. Examples:

manner - H occurs as indicated by M: stylish writing;
material - H is made of M: brick house;
measure - M is a measure of H: heavy rock;
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The words in the pairs from the dataset are also annotated
with part of speech and WordNet 1.6 word senses.

We describe two methods of representing these data. They
are evaluated in learning experiments. One representation is
based on word hypernym information extracted from Word-
Net. The second representation relies on grammatical collo-
cation information extracted from a corpus.

WordNet-based representation
WordNet was designed to capture and describe word senses,
and inter-connect them through a variety of lexical and se-
mantic relations. We make use of the hypernym/hyponym
links, to represent each head word and modifier in a pair
through their hypernyms (ancestors) in WordNet.

WordNet’s hypernym/hyponym structure is not uniform.
Some domains are presented in greater detail, with a finer
distinction in the hierarchy. Below a certain level, however,
regardless of the domain represented, the synsets become
quite specific and rather technical, and are not helpful in gen-
eralization. We must find a representation for the words in
the pairs that strikes a balance between WordNet’s generality
and specificity extremes. The maximum depth in WordNet
reached by words in our data is 14. In an earlier research us-
ing this dataset (Nastase & Szpakowicz 2003) we observed
that rule-based classifiers pick synsets at levels above 7. We
therefore choose level 7 as the cut-off point. This serves
as a form of feature selection, which provides more gen-
eral features to the memory- and kernel-based systems, and
enough generalization levels for the decision tree to find the
ones that work best for the classes we learn. This choice
is supported by high precision, recall and F-measure scores,
reported in the “Experimental setup and results” section.

We use a binary feature representation. To represent a
word, using the word sense information in the data, we
extract all ancestors located at the cut-off level and higher
for the corresponding word sense. This produces 959
features to represent the head nouns, and 913 features for
the modifiers, to which we add the part of speech. Each
noun-modifier pair in the dataset is represented as a vector:

< sm1, ..., sm913, posm, sh1, ..., sh959, posh, relation >

shx, smx can be 1 or 0: this synset either does or
does not appear as an ancestor of the head or the modifier,
respectively. This representation will naturally address the
problem of multiple inheritance in WordNet, since we can
represent any number of ancestors of a node, just by setting
the corresponding element to 1.

We attempt to connect adjective and adverb modifiers to
the noun hierarchy using pertains to and derived from links.
If this is possible, the representation of such a word will
consist (mostly) of the representation of the noun synset to
which it was linked. If such a connection cannot be made,
the representation will be less informative, because the ad-
jective and adverb synsets are not organized in a hierarchy
as complex as the nouns’.

We also perform experiments using information from
WordNet when word-sense information is ignored. In this
case, a word’s representation contains the ancestors at and
above the cut-off level for all its possible senses. The pur-
pose of these experiments is to measure the impact of know-
ing the sense of words in a pair for determining the semantic
relation between them. The representation is similar to the
one described above. The length of the vector representing

a pair increases: there are now 1918 (hypernym) features to
represent the head nouns, and 1741 for the modifier.

Corpus-based representation using grammatical
collocations
Contexts provide strong and consistent clues to the sense of
a word (Yarowsky 1993). If a corpus captures a large sample
of language use, it allows us to describe the senses of a word
through collocated words. Suppose that noun N , denoting
entity E, is the subject of a sentence. Verbs that co-occur
with N characterize occurrences in which E can participate,
for example a child can grow, eat, sleep, play, cry, laugh ....
Adjectives that modify N tell us about E’s attributes, so for
example a child can be good, happy, sad, small, tall, chubby,
playful, ..., and so on.

We test such a context-based word-sense description for
the task of learning noun-modifier relations. The Word
Sketch Engine (WSE) (Kilgarriff et al. 2004) gives us col-
location information organized by grammatical relations. It
runs on a corpus – in our case, the British National Cor-
pus – and extracts, for a given word, collocation information
based and organized on grammatical categories. Thus, for a
noun the engine builds a list containing: verbs with which
the noun appears as a subject, verbs with which it appears as
an object, the prepositional phrases attached to it (grouped
by prepositions), the head nouns it modifies, its adjectival
and nominal modifiers, and so on. The advantage of hav-
ing such a resource is that it eliminates most, if not all, of
the noise that we would encounter had we used a simple
proximity-based process to gather co-occurrences – n-grams
that are not proper phrases, are not connected to the words
we consider, or do not span the entire phrase. Figure 1 shows
a partial word sketch for the noun cloud4.

cloud-n
and/or object of subject of a modifier pp of-p ...
mist-n watch-v scud-v dark-j smoke-n
rain-n swirl-v drift-v scudding-j dust-n
sky-n billow-v gather-v black-j steam-n
cloud-n form-v hang-v grey-j ash-n
... ... ... ... ...

Figure 1: Sample (partial) word sketch for the noun cloud
produced by the Word Sketch Engine

We produce a word sketch for each word in each noun-
modifier pair in the data. From each word sketch we obtain
a list of strings by concatenating each grammatical relation
Gi with each word in this relation. For example, for the noun
cloud, we will generate the list { and/or mist, and/or rain,
..., object of watch, object of swirl, ...} .

From the strings generated for all words that appear in our
data, we filter out the least frequent ones to obtain a binary
feature set to represent each word. The corresponding value
for a feature Gi wk will be 1 for word w if w appears in
grammatical relation Gi with wk in the corpus.

This feature construction and selection process produces
a vector of 4969 grammatical relation word strings. The fi-
nal set of features that represents the noun-modifier pair has
2 * 4969 features. We have chosen a binary representation
rather than a representation which includes frequency infor-
mation. We have two reasons: (i) the fact that two words ap-

4To simplify, we have omitted frequency and other statistical
information that the WSE produces.

783



Rel. class Examples PTL RTL FTL PLRA RLRA FLRA PWN RWN FWN PWNas RWNas FWNas PWS RWS FWS

causal 86 (14.3%) 21.2 24.4 22.68 38.8 38.4 38.59 69.56 18.6 29.35 52.63 11.76 19.23 17.37 67.05 27.60
participant 260 (43.3%) 55.3 51.9 53.54 66 67.3 66.64 52.16 88.41 65.61 47.16 92.46 62.46 59.01 28.57 38.5
quality 146 (24.3%) 45.4 47.3 46.33 54.2 57.5 55.80 54.94 34.48 42.37 50 20.42 29 46.42 27.46 34.51
spatial 56 (9.3%) 29.1 28.6 28.84 43.1 39.3 41.11 85.71 10.71 19.04 42.85 5.55 9.83 21.42 5.55 8.82
temporal 52 (8.7%) 66 63.5 64.72 77.3 65.4 70.85 89.47 65.38 75.55 80 8 14.54 88.57 62 72.94

Table 1: Precision, recall and f-score for memory-based learning experiments (2 nearest neighbour)

pear together, connected by a grammatical relation, indicates
that they are related; (ii) the number of co-occurrences is
corpus-specific, and frequency counts from different corpora
can lead to different results. We show that this representa-
tion gives good learning results. Frequency information can
be used to filter out noise (with the potential of deleting im-
portant, but infrequent, collocations) or for feature selection.

One advantage of using grammatical collocations ex-
tracted from a corpus is that we do not need data annotated
with word senses. On the other hand, the representation
obtained will group together contextual information for all
possible senses of a word. The empirical results show that,
despite this, we can still find common characteristics among
words involved in the same semantic relation. Having word-
sense disambiguated associations may, however, lead to bet-
ter results. We will test this hypothesis in future work.

Experiments
As we write in the “Related work” section, Turney &
Littman (2003) and Turney (2005) applied the nearest
neighbour method to the task of learning semantic re-
lations on the same dataset that we use. They used
the leave-one-out method to measure the performance of
their predictions, and the class (semantic relation) of a
test example is predicted based on its two nearest neigh-
bours. Table 1 shows the reported results when using
64 joining terms (PTL, RTL, FTL) and when using LRA
(PLRA, RLRA, FLRA). Here, P, R and F-score stand for pre-
cision, recall and F(1) measure (which gives the same weight
to recall and precision). To compare these paraphrase-
based representations with the corpus-based and WordNet-
based ones, Table 1 includes the results obtained using
WordNet with word sense information (PWN , RWN , FWN )
and without (PWNas, RWNas, FWNas – “WN all senses”),
and Word Sketches ( PWS , RWS , FWS ) in methodologi-
cally similar experiments – using an instance-based learner
(TiMBL v. 5.1.0 (Daelemans et al. 2004)), with 2 nearest
neighbour and leave-one-out testing.

In terms of recall and F-score, the paraphrase-based rep-
resentation which uses latent relational analysis (LRA) per-
forms better than all the other representations. On the other
hand, it performs more poorly in terms of precision in 4 of 5
relation classes, with large differences in 3 of those 4 cases
(30.76% for CAUSAL, 42.61% for SPATIAL, and 12.17% for
TEMPORAL) compared to WordNet with word-sense infor-
mation.

The experiments that follow use a different methodology.
Several 10-fold cross-validation runs verify that the learn-
ers have a consistent performance on different random data
splits. The results of these experiments are not directly com-
parable with the ones in Table 1, because they are produced
with different training-testing methods.

We apply memory-based learning (TiMBL v. 5.1.0
(Daelemans et al. 2004)), decision tree induction (C5.0
v.1.16 (Quinlan)) and Support Vector Machine (SVMlight v.

6.01 (Joachims)) to compare word representation methods,
discussed above, for the task of learning noun-modifier se-
mantic relations. To give more reliable results, we perform
five runs. For each run we split the data into 10 random splits
which preserve the class distribution of the original data set.
We perform 10-fold cross-validation experiments on these
splits with the three machine learning algorithms, adjusting
the formatting of the files to fit each tool. These are binary
experiments, in which examples of each relation class in turn
become the positive instances, and the rest of the examples
become the negative instances.

Preliminary runs found a configuration for each classifier.
The results presented in this section were obtained with the
following configurations: TiMBL uses the IGTREE classifi-
cation algorithm (decision-tree-based optimization) and the
χ2 feature-weighing scheme; C5.0 runs with the default con-
figuration; SVMlight uses the linear kernel.

Empirical Results and Discussion
Table 2 shows the results of learning the assignment of five
classes of semantic relations in binary classification exper-
iments for each relation class. The F-score baseline for
each binary classification experiment combines (with equal
weights) the precision when all examples are classified as
positive – which is equal to the percentage of examples in
the positive class – and the corresponding 100%recall. This
baseline is independent of the learning method used. It is
also higher for most classes than two alternatives that rely
exclusively on the presence of the words in the pairs – one
using sparse binary vector representation, the other multi-
valued attributes. In these two cases, semantic relation as-
signment is simply based on known associations (present in
the training data) between a word (head noun or modifier)
and specific semantic relations.

The precision, recall and equally-weighted F-score results
for each representation are averages of five individual 10-
fold cross-validation results, plus-minus the standard devia-
tion for each average. Because of class imbalance (averag-
ing 1:5 for the five-class problem), accuracy is not as infor-
mative as precision, recall and F-score, and is not reported.

The data representation is very high-dimensional, as it of-
ten happens in NLP problems. Not all features have the same
effect on the learning of noun-modifier relations. Using fea-
ture weighting schemes in TiMBL and C5.0’s built-in fea-
ture selection gives better learning results than SVMlight in
terms of F-score.

A low standard deviation indicates that the performance in
the real world will be close to the estimated average. A com-
bination of high precision and recall values and low standard
deviation shows classes of relations that are learned well in
a particular experimental configuration. This is the case for
the TEMPORAL class learned using C5.0 or TiMBL with
both the WordNet-based and the Word Sketch-based repre-
sentations. In situations where the standard deviation is
high, we cannot make confident predictions about future per-
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Rel.class Baseline TiMBL C5.0 SVM light
F-score P R F-score P R F-score P R F-score

WordNet-based representation, with word sense information
CAUSAL 25.43 52.96±3.98 23.8±2.62 31.14±2.96 56.82±10 14.33±2.13 21.8±3.25 68.66±9.68 17.79±0.85 27.48±1.30
PARTICIPANT 60.35 68.86±1.78 48.22±1.58 56.22±1.65 71.65±1.75 31.56±1.40 43.05±1.51 69.06±1.79 50.31±1.56 57.68±1.44
QUALITY 39.16 64.71±1.58 30.24±1.19 40±1.23 68.14±5.11 30.02±1.48 39.72±1.98 66.28±2.49 24.14±2.23 34.57±2.19
SPATIAL 16.95 74.73±6.18 37.86±2.39 47.86±2.44 67.43±17.03 28.73±5.28 37.72±6.77 66±8.13 25.52±1.51 35.73±1.71
TEMPORAL 15.78 92.63±1.33 76.4±3.44 82.47±2.55 94±0.45 79.2±1.6 84.73±0.92 77.46±8.49 52.15±1.31 60±1.44
WordNet-based representation, without word sense information
CAUSAL 25.43 36.63±10.82 7.77±1.88 12.32±3.00 50.73±5.75 16.24±1.98 23.68±2.62 62.40±13.29 15.46±1.37 24.07±1.87
PARTICIPANT 60.35 67.61±1.79 23.02±0.97 33.78±1.21 73.04±1.92 27.73±1.37 39.74±1.55 63.72±2.60 39.22±1.24 47.88±1.75
QUALITY 39.16 65.08±4.45 23.16±1.16 33.16±1.56 53.79±3.95 18.39±0.95 26.74±1.17 62.83±6.55 15±1.55 23.75±2.27
SPATIAL 16.95 46.67±13.82 16.4±3.06 23.18±4.75 54.93±5.09 18.73±1.58 26.59±2.50 34.66±10.5 11.37±1.82 16.91±3.30
TEMPORAL 15.78 97.10±0.55 57.6±4.07 70.38±3.72 83.03±2.81 34±2.52 45.57±2.29 61.66±4.11 27.15±2.77 37.14±3.00
Word Sketch-based representation
CAUSAL 25.43 32.07±3.48 19.79±3.12 23.58±3.32 27.96±3.74 18.5±1.34 21.12±1.30 32.06±12.56 7.83±3.41 12.43±5.32
PARTICIPANT 60.35 59.48±1.25 51.16±1.47 54.43±0.98 54.02±1.19 53.01±1.95 53.18±1.30 71.12±1.56 42.23±0.64 52.47±0.65
QUALITY 39.16 53.52±3.69 39.28±1.28 44.67±1.67 43.43±1.05 44.33±2.54 43.08±1.31 56.53±4.05 19.81±0.97 28.67±1.42
SPATIAL 16.95 43±5.33 26.08±5.23 30.57±5.07 32.49±6.10 30.46±3.66 29.8±4.29 37±8.05 13.68±1.32 19.7±2.57
TEMPORAL 15.78 81.9±3.17 73.5±5.89 75.62±3.31 77.72±4.28 69.6±1.49 70.2±2.16 80.03±6.33 36.81±2.83 48.3±2.44

Table 2: Learning results for TiMBL, C5.0, SVMlight for WordNet-based and Word Sketch-based representations
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TiMBL

formance.
Figure 2 plots the F-scores and standard deviation for the

word representations explored, when TiMBL was the learn-
ing method. We plot TiMBL’s results, because – according
to the standard deviation – it was the most stable learner. We
observe that the performance of the representation based on
Word Sketches, which does not distinguish word senses, per-
forms better than WordNet without word sense information.
It is also close to WordNet with sense information.

The advantage of using corpora is that no knowledge-
intensive preprocessing is necessary, and the method does
not rely on other lexical resources. The process may there-
fore be ported to other languages. In order to use para-
phrases effectively, a larger corpus is needed so sufficiently
many paraphrases can be found. The same is true of build-
ing descriptions of word meaning based on grammatical
collocations in a corpus: the larger the corpus, the higher
the chances that we find the most informative collocations.
Here are some collocation features picked by C5.0 during
the learning phase: happen Modifier, occur during Modifier,

wait until Modifier 5 indicate a TEMPORAL relation; predict
Head-noun, Head-noun and/or fear6 indicate a CAUSAL re-
lation.

We observe the impact of having word-sense information
when we compare the results of learning experiments with
the WordNet-based representation with and without word-
sense annotation. The difference in results is quite dra-
matic. The F-scores drop for all relation classes and all ML
methods used. Moreover, the difference in results when us-
ing Word Sketches and when using non-annotated data – in
favour of Word Sketches – indicate that when no word-sense
information is available, corpus-based word descriptions are
more informative and useful for the task of learning seman-
tic relations. The interesting exceptions are the recall for
the PARTICIPANT class in 2-nearest neighbour experiments
– 92.46% compared to the next best one of 88.41% – and
the precision for the TEMPORAL class in cross-validation
runs with TiMBL – 97.1%, compared to the 92.63% preci-
sion when word senses are used. The fact that an increase
in precision is accompanied by a sharp drop in recall (from
76.4 to 57.6) means that the learner reduces the number of
examples incorrectly assigned to the temporal class, but at
the same time more temporal examples are assigned to an
incorrect class. The effect of including all word hypernyms
is that it introduces ambiguity between previously well sep-
arated words (when sense information was used) through
shared hypernyms that do not pertain to the word sense in
the pair. This causes more of the pairs to become ambigu-
ous from the semantic relation point of view, and these will
be misclassified. The pairs with stronger commonalities or
non-ambiguous hypernyms will be fewer, but will be classi-
fied better. A reverse effect explains the increase in recall for
PARTICIPANT , accompanied by a drop in precision (from
52.16% to 47.16%) – when more examples of the class are
caught, but are classified less correctly. PARTICIPANT con-
tains the most instances, 43.22% of the dataset. Previously

5object of happen-v, pp obj during-p occur-v, pp obj until-p
wait-v

6object of predict-v, and/or fear-n
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discriminating hypernyms will now cover a more heteroge-
neous mixture of instances.

Using WordNet with word-sense information gives very
high results – 82.47% F-score – especially in terms of pre-
cision – 92.63%. This shows that indeed there are inherited
characteristics of word senses which determine the seman-
tic relations in which these words are involved. Here are
some features chosen by the decision tree method: {clock
time, time}, {measure, quantity, amount, quantum} for the
modifier indicate a TEMPORAL relation; {ill health, un-
healthiness, health problem} for the modifier indicate a
CAUSAL relation; {causal agent, cause, causal agency} for
the head indicate a PARTICIPANT relation. The fact that re-
call is lower may suggest that some word senses could not
be connected, probably because what they share cannot be
captured by the hypernym/hyponym relation. The word rep-
resentation can be extended to make use of other relations in
WordNet, such as meronym/holonym.

Conclusions and Future Work
We have compared different methods of representing data
for learning to identify semantic relations between nouns
and modifiers in base noun phrases.

Looking at the results obtained with the different repre-
sentation methods, we can conclude that we can detect suc-
cessfully the TEMPORAL relation between words by look-
ing at either of the following: individual word senses as
described by WordNet, word meaning as described by its
contexts, or the prepositions or paraphrases that connect the
words in the pair. For the other four relation classes, describ-
ing a word using sense specific WordNet information allows
for high precision in identifying the correct relation class,
but in order to increase the number of relation instances rec-
ognized, using corpus-based features helps. When no word-
sense information is available, corpora-based features will
lead to better results than using all word senses in WordNet.

As we said previously, using the word meaning represen-
tation methods described generates very high dimensional
data. While we do obtain results well above the baseline,
it is quite likely that the ML tools are overwhelmed by the
large number of attributes. We will experiment with dif-
ferent feature selection methods to find a small set of word
meaning descriptors that may produce even better results.

Because we use sets of features from different sources,
which achieve high precision on different classes, we could
use co-training to bootstrap the automatic tagging of a new
set of pairs (Balcan, Blum, & Yang 2005). This would allow
us to incrementally increase a starting (small) dataset with
examples classified at high precision. Obtaining a larger
dataset would help address the problem of data sparseness.

References
Allen, J. F. 1984. Towards a general theory of action and time.
Artificial Intelligence 23(2):123–154.
Baker, C. F.; Fillmore, C. J.; and Lowe, J. B. 1998. The Berkeley
FrameNet project. In COLING-ACL 1998, 86–90.
Balcan, M.-F.; Blum, A.; and Yang, K. 2005. Co-training and
expansion: Towards bridging theory and practice. In Saul, L. K.;
Weiss, Y.; and Bottou, L., eds., Advances in Neural Information
Processing Systems 17. Cambridge, MA: MIT Press. 89–96.
Barker, K., and Szpakowicz, S. 1998. Semi-automatic recognition
of noun-modifier relationships. In Proc. of COLING-ACL ’98,
96–102.

Barker, K. 1998. Semi-Automatic Recognition of Seman-
tic Relationships in English Technical Texts. Ph.D. Disserta-
tion, University of Ottawa, Department of Computer Science.
http://www.cs.utexas.edu/users/kbarker/thesis.
Berland, M., and Charniak, E. 1999. Finding parts in very large
corpora. In Proc. of ACL 1999, 57–67.
Daelemans, W.; Zavrel, J.; van der Sloot, K.; and van den Bosch,
A. 2004. TiMBL: Tilburg Memory Based Learner, version 5.1.
Reference Guide. ILK Technical Report 04-02, Available from
http://ilk.uvt.nl/downloads/pub/papers/ilk0402.pdf.
Girju, R.; Moldovan, D.; Tatu, M.; and Antohe, D. 2005. On the
semantics of noun compounds. Computer, Speech and Language
19(4):479–496.
Hearst, M. 1992. Automatic acquisition of hyponyms from large
text corpora. In Proc. of CoLing 1992, 539–545.
Joachims, T. SVM light. http://svmlight.joachims.org.
Kilgarriff, A.; Rychly, P.; Smrz, P.; and Tugwell, D. 2004. The
sketch engine. In Proc. of EURALEX 2004, 105–116.
Kipper, K.; Dang, H. T.; and Palmer, M. 2000. Class-based
construction of a verb lexicon. In Proc. of AAAI 2000.
Landauer, T. K., and Dumais, S. 1997. A solution to plato’s
problem: The latent semantic analysis theory of the acquisition,
induction and representation of knowledge. Psychological Review
(104):211–240.
Lauer, M. 1995. Designing Statistical Language Learners: Ex-
periments on Noun Compounds. Ph.D. Dissertation, Macquarie
University, Australia.
Levi, J. 1978. The Syntax and Semantics of Complex Nominals.
New York: Academic Press.
Lin, D. 1998. Automatic retrieval and clustering of similar words.
In Proc. of COLING-ACL ’98, 768–774.
Myers, A.; Reeves, R.; Macleod, C.; Szekely, R.; Zielinska, V.;
Young, B.; and Grishman, R. 2004. The NomBank project: An
interim report. In HLT-EACL Workshop: Frontiers in corpus an-
notation, 24–31.
Nastase, V., and Szpakowicz, S. 2003. Exploring noun-modifier
semantic relations. In Proc. of IWCS 2003, 281–301.
Palmer, M.; Gildea, D.; and Kingsbury, P. 2005. The proposi-
tion bank: an annotated corpus of semantic roles. Computational
Linguistics 31(1):71–106.
Purandare, A., and Pedersen, T. 2004. Word sense discrimination
by clustering contexts in vector and similarity spaces. In Proc. of
CONLL 2004, 41–48.
Quinlan, R. C5.0. http://www.rulequest.com.
Rosario, B., and Hearst, M. 2001. Classifying the semantic re-
lations in noun-compounds via a domain specific hierarchy. In
Proc. of EMNLP 2001, 82–90.
Rosario, B.; Hearst, M.; and Fillmore, C. 2002. The descent of
hierarchy, and selection in relational semantics. In Proc. of ACL
2002, 417–424.
Turney, P., and Littman, M. 2003. Learning analogies and se-
mantic relations. Technical Report Technical Report ERB-1103.
(NRC #46488), National Research Council, Institute for Informa-
tion Technology.
Turney, P. 2005. Measuring semantic similarity by latent rela-
tional analysis. In Proc. of IJCAI 2005, 1136–1141.
Vanderwende, L. 1994. Algorithm for automatic interpretation of
noun sequences. In Proc. of ACL 1994, 782–788.
Yarowsky, D. 1993. One sense per collocation. In ARPA Human
Language Technology Workshop.
Yarowsky, D. 1995. Unsupervised word sense disambiguation
rivaling supervised methods. In Proc. ACL 1995, 189–196.
Zhao, S., and Grishman, R. 2005. Extracting relations with inte-
grated information using kernel methods. In Proc. of ACL 2005,
419–426.

786


