Longest—commonest Match

Adam Kilgarriff', Vit Baisa!?, Pavel Rychly'?, Milo§ Jakubidek'?

Lexical Computing Ltd., Brighton, United Kingdom
2Natural Language Processing Centre, Masaryk University, Faculty of Informatics, Brno, Czech Republic
{vit.baisa,pavel.rychly,milos. jakubicek}@sketchengine.co.uk

Abstract

Finding two-word collocations is a well-studied task within natural language processing. The
result of this task for a given headword is usually a list of collocations sorted by a salience
score. In corpus manager Sketch Engine, these pairs are extracted from data using a word
sketch grammar relation rules and log-dice statistics resulting in a sorted list of triples <head-
word, grammar-relation, collocate>. The longest-commonest match is a straightforward ex-
tension of these two-word collocations into multiword expressions. The resulting expressions
are also very useful for representing the most common realisation of the collocational pair and
to facilitate the interpretation of the raw triplet because sometimes, for such a triple, it is not
clear from what texts it comes. We present here an algorithm behind the longest—commonest
match together with a simple evaluation. The longest—commonest match is already imple-
mented in Sketch Engine.

Keywords: multiword expresion; collocation; word sketch; Sketch Engine

1. Introduction

The prospects for automatically identifying two-word multiwordd!] in corpora have been ex-
plored in depth, and there are now well-established methods in widespread useE]. But many
multiwords are of more than two words and research into methods for finding items of three
and more words has been less successful (Kilgarriff et al., 2012)). Here we introduce a method
for finding salient multiword expressions based on collocations—word sketches (Kilgarrift
et al., [2004). The resulting multiword expressions are also very useful when it is not clear
from what texts a collocation pair comes, e.g. <flame,, object-of, put,>, <love,, object,
neighbor, >, etc. The longest—commonest match is therefore also a representative expression
for collocational pairs. In the next section we describe the longest—commonest match, the al-
gorithm and a rationale behind it. Then we present a small scale evaluation of the algorithm
which was done on an English corpus and a set of collocation pairs. In the fourth section we
discuss some issues with finding the longest—commonest matches and in the fifth section we
propose some possible improvements of the algorithm.

1 We use ‘multiwords’ as a cover-all term to include collocations, colligations, idioms, set phrases etc.
2 (Church and Hanks), [1990} [Pearce, 2002) and others.

397

2. Longest—commonest match

In this section we describe an algorithm for identifying candidate multiwords of more than
two words called the longest—commonest match (LC match; in the previous works we have
used the terms commonest match or commonest string). It starts from a two-word collocation,
as identified using well-established techniques (dependency-parsing, followed by finding high-
salience pairs of lexical arguments to a dependency relation) (Kilgarriff et al. 2004). We
then explore whether a sufficient proportion of all collocation examples is accounted for by
a particular string—the longest—commonest match.

The two-word collocations from which we start are triples: <lemmal, grammar-relation,
lemma2> for example <drink,, object, tea,>. The lexical arguments are lemmas, not word
forms, and are associated with word class, here n for noun, v for verb. The corpus instances
that will have contributed to giving a high score include “They were drinking tea.” and “The
tea had been drunk half an hour earlier.”” The first argument may be to the right, or to the
left, of the second. It depends on a particular grammar relation which is described in word
sketch grammar rules.

If a particular string (consisting of word forms, not lemmas) accounts for a high proportion
of the corpus instances, it becomes a candidate multiword-of-more-than-two-words. We want
the string to be common and we want it to be long. Hence the name. We find the longest—
commonest match as follows:

Input: two lemmas forming a collocation pair, and N hits for the pair in a given corpus;
parameters: proportion p (1/4), minimum frequency minf (5) and minimum number of hits
minhits (10).

Initialization: initialize the match as, for each hit, the string that starts with the beginning of
the first of the two lemmas and ends with the end of the second. If the initial number of hits
is less than minhits then return empty string, i.e. there is no LC match for a given lemmas.

For each hit, gather the contexts comprising the match, the preceding three tokens (the left
context) and the following three tokens (the right context).

1. Count the instances of each unique string. Do any of them occur more than p x N?
2. If no, return empty string.
3. If yes
(a) Call the most frequent string LC match
(b) Look at the first tokens in its right and left contexts (max 3 positions), if we cannot
expand farther, return LC match
(¢) Do any of the expanded strings occur more than p x N times?
(d) If no, return the current LC match.

398

(e) If yes:
i. Assign the most frequent expanded string to LC match.
ii. Go to 3.b.

If there are no strings meeting the thresholds, there is no LC match (it is empty). Since LC
match is extracted from corpus examples it consists from word forms not from lemmas.

An earlier version of this work was presented at EURALEX 2012 (Kilgarriff et al., [2012]).
We present it here again because it was only covered very briefly, and in the meantime we
have developed a version of the algorithm that works very fast even for multi-billion word
corpora, and is fully integrated into our corpus query system Sketch Engine, see Figure [1] It
is a word sketch table for the headword put (verb). The first column contains collocates, the
second column contains grammar relations, the third and fourth columns contain frequency
and salience score and the last column contains LC matches.

(verb)
p Ut British National Corpus + Commonest Match freq = 67,367

down part_trans 2534 9.94 putdown
forward modifier 1.720 11.56 put forward
up part_intrans 1,176 7.83 to put up with
just modifier 832 8.77 just put
in part_intrans 796 8.88 putin
pressure object 519 8.20 put pressure on
then modifier 438 8.05 and then put
head object 387 6.92 put his head
thing object 382 6.57 putthings
end object 327 6.80 to put an end to
off part_intrans 320 7.76 be put off
place pp_in-p 241 6.61 putin place
right np_adj_comp 217 7.96 putit right
phone object 213 7.47 put the phone down
hand part out-a_obj 167 5.92 put out a hand
lot object 147 6.30 puta lot of
use pp_to-p 145 6.33 putto good use
ketile object 142 7.15 putthe kettle on

Figure 1: Integration of the longest—commonest match in Sketch Engine

Comment on Figure[]] In some cases, the LC match is simply a bigram of adjoint collocates:
put down, put in, etc. Sometimes the two collocates are separated by a token thus producing
a trigram: put his head, put in place. This may occur when a headword is a phrasal verb with
an object (put in place). In the example there are also 4-grams, e.g. put the phone down. It
again captures phrasal verb and this time the object comes together with the determiner. It

399

results directly from the LC match algorithm that these “examples” are the most frequent
realisations of the collocation pairs.

Implementation We have implemented the longest—commonest match in Python language
and integrated it into Bonito/manatee corpus manager (Rychly, 2007). The script is run only
once at the time of corpus compilation and the resulting longest—commonest matches for each
collocation pair are saved into word sketch data index files. That is why it is immediately
available when showing word sketch data (as in Figure . The downside is that we need to
set the parameters p, minhits, minf before the corpus compilation process. To compute and
show LC matches with different settings, we need to process the whole corpus again and store
the found matches in separate index files.

3. Evaluation

To overcome the issue of pre-setting the parameters, we designed a simple evaluation of
various settings to find out what is the best combination of the parameters. We were most
interested in the proportion, parameter (p). Other parameters (minhits, minf) are good for
controlling coverage of the output and for limiting the time needed for computing LC matches
for all collocation pairs in a corpus. The width of the token context (3 to the left and to the
right) is not adjustable, but it could be another parameter available for tuning. Nevertheless
we have decided to compare results for various settings of the only parameter, p.

Since this is not a classification task, it is not possible to measure the standard metrics
precision and coverage. We have let two annotators decide for a set of 500 LC matches
(extracted from SKELL corpus (Baisa and Suchomel, 2014)) which are good (helpful, well-
formed, informative) and which are wrong but the definition of what is good and wrong was
hard to agree on. Instead, we extracted LLC matches for various settings of the proportion
parameter p and let two annotators compare the resulting LC matches. The features were the
same as before. Is one LC match a better example for a collocation pair? Is one LC match
more informative, explanatory and understandable than other matches? The difference was
that annotators were comparing three LC matches instead of telling yes or no for particular
LC matches. The agreement was much better for this variant. For the results, see Table [I}

Two annotators (Al, A2) were provided with 102 randomly selected collocation pairs (ex-
amples below) together with three LC matches where the proportions (parameter p in the
algorithm) were 0.5, 0.25 and 0.16 (columns LC match 1, 2 and 3, respectively). Their task
was to select the most helpful LC match for understanding the collocation pair (first three
columns). When two columns were the same, both column numbers were used in the anno-
tation (last two columns labelled with annotator’s indication). The most frequently favoured
LC match (61%) was the least restrictive (p = 0.16) which means that in general, the length
was preferred against the commonness of the strings. LC match 2 has been selected in 58% of

400

Headword Relation Collocate |[LC match 1 LC match 2 LC match 3 Al A2
love-v modifier personally-a|l personally love . I personally love . I personally love 1 1
calorie-n object-of need-v calories needed 3 3
flame-n object-of put-v put the flames out put the flames out 23 23
vision-n modifier limited-j limited vision limited vision limited vision . 12 12
meeting-n modifier joint-j joint meeting a joint meeting a joint meeting of the | 2 3
classroom-n modifier virtual-j virtual classroom virtual classroom a virtual classroom 3 12
unofficial-j modifies symbol-n |unofficial symbol of an unofficial symbol of an unofficial symbol of| 23 23
worthwhile-j adj-comp-of seem-v seems worthwhile seems worthwhile to 3 3
climb-v modifier gradually-a gradually climbing gradually climbing 23 23
delicate-j modifies matter-n delicate matter a delicate matter a delicate matter 23 23

Table 1: Example of lines from evaluation data together with annotators’ choices.

cases and LC match 1 (the most restrictive p) in 33% of cases. Mind that it was not a simple
classification but rather the assignment of (multiple) labels to the LC matches (columns).
That is why the percentages do not sum up to 100%. There was 67% agreement between the
two annotators.

FEvaluation data We have used a random sample from the dataset used in (Kilgarriff et al.|
2014). The datasetlﬂ contains only verbs, nouns and adjectives as headwords in the En-
glish language. Here we include some examples of collocation pairs from the gold standard
dataset (headword, collocate): (average;, age,), (black;, hole,), (circuit,, short;), (delicate;,
ecosystem,,), (empty;, bin,), (free;, lunch,), (global;, crisis,), (harp,, player,), (inject,,
vaccine,,), (kid,, entirely,), (love,, genuinely,), (metal,,, galvanized,), (operational;, remain,),
(past;, participle,,), (root,, firmly,), (slow,, abruptly,), (tempting;, extremely,), (unofficial;,
biography,,), (virulent;, campaing,,), (weed,,, grow,), (worthwhile;, highly,).

4. Discussion

The evaluation helped us to discover some issues which we need to address. The most obvious
is the punctuation being part of LC matches which was never preferred by annotators. It
would be straightforward to strip it from the LC matches, nevertheless we are not sure if
this is desirable. Sometimes it might be helpful to know that some phrases contain a comma
or a full stop. It might help users understand that a certain phrase is used usually at the
end of sentence (or at the beginning as the first example from Table [1|indicates) or that it is
separated from the rest of the sentence by a comma.

Since the algorithm is language-independent (once we have a list of collocation pairs), adding
a language-dependent list of punctuation to be removed from LC matches would spoil this
desired feature. But a simple approach usable for most European languages would be simply
to strip all commas, semicolons, full stops, exclamation and question marks. The punctuation

3 Available for download: http://www.sketchengine.co.uk/documentation/wiki/CorpEval

401

http://www.sketchengine.co.uk/documentation/wiki/CorpEval

would be removed only from the beginning and the end of a LC match as a punctuation mark
within an LC match will have an obvious interpretation.

It is also clear that any match is preferred against an empty LC match. As for finding mul-
tiword expressions, empty matches decrease coverage which is not a big issue; but regarding
the second goal of a LC match it surely decreases understanding of the original collocation
pair. In other words, it is always helpful to have at least the collocation pair in the most
common order (see examples in Table [I} limited vision, joint meeting, etc.) than to rely only
on the original collocation pair. Thus it is reasonable to use a rather less restrictive parameter

P

The original combination of parameters proved to be solid. We found that using a somewhat
less restrictive parameter p yields slightly better results but the difference is too small (3%)
for us to change the default settings currently used in Sketch Engine.

5. Further work

Based on the evaluation and on a brief error analysis of the algorithm, we want to explore a
few possible improvements of the algorithm in the future.

First, in some cases, LC matches were skewed by many occurrences of a string within one
specific document. It could be treated by filtering input concordances to contain one (e.g.
the first one) hit per document. This filter is already implemented in Sketch Engine.

In general, the algorithm suffers when duplicate documents are present in a corpus. This is ad-
dressed by de-duplication phase when building such corpus and has been treated in (Pomikalek],
2011). Sketch Engine uses procedures described in the PhD thesis.

Second, the current algorithm works with parameters which are fixed for all concordances /
collocation pairs. It is to be evaluated whether making the parameters relative to concordance
size (N input hits) would help.

Another improvement to the algorithm efficiency would be sampling of input concordances.
The time complexity of the algorithm is roughly linear to the length of the input (concordance
with NV lines). For very large concordances (concordance for collocation pair take,, place, has
almost 1 million hits in corpus enTenTen12) it would be reasonable to use a random sample
of such concordances. The question is whether the sample should have a fixed size or if the
size should be (again) relative to the size of the original concordance. Despite the resulting
LC matches being thought to be the same it is necessary to try and evaluate it. The sampling
is also already available in Sketch Engine.

It was not mentioned earlier but the algorithm does not depend on collocation pairs. It is
simply applicable for any concordance, meaning that for any search in a corpus, we can

402

compute (on-the-fly) the longest—-commonest match or the longest-commonest KWIC as a
generalized and expanded representation of the original corpus search query. It could be a
handy feature to provide such generalized KWIC for all searches in Sketch Engine but again,
we would need to evaluate its contribution based probably on user feedback.

6. Conclusion

We believe that the LC match will improve understanding of sometimes cryptic collocation
pairs (triples) as available in Sketch Engine. The resulting strings are also salient multiword
expressions despite the fact that it is not straightforward to properly evaluate the quality of
these multiwords.

7. Acknowledgement

This paper was published posthumously for Adam Kilgarriff died on Saturday, May 16th,
2015. He has been working on this paper even in his later days while undergoing a palliative
chemotherapy. We dedicate this paper to him, as the originator of the longest—commonest
match.

Adam Kilgarriff (12 February 1960 — 16 May 2015)

This work has been partly supported by the Ministry of Education of CR within the LINDAT-
Clarin project LM2010013 and by the Grant Agency of CR within the project 15-13277S. The
research leading to these results has received funding from the Norwegian Financial Mech-
anism 2009-2014 and the Ministry of Education, Youth and Sports under Project Contract
no. MSMT-28477/2014 within the HaBiT Project 7TF14047.

403

8. References

Kilgarriff, A., Rychly, P., Kovar, V., & Baisa, V. (2012). Finding multiwords of more than two
words. In Fjeld, R. V. & Torjusen, J. M., editors, Proceedings of the 15th EURALEX
International Congress, Oslo, Norway. Department of Linguistics and Scandinavian
Studies, University of Oslo, pp. 693-700.

Baisa, V. & Suchomel, V. (2014). SKELL: Web interface for english language learning. In
FEighth Workshop on Recent Advances in Slavonic Natural Language Processing, pp.
63-70.

Church, K. W. & Hanks, P. (1990). Word association norms, mutual information, and lexi-
cography. Computational linguistics, 16(1), pp. 22-29.

Kilgarriff, A., Rychly, P., Jakubicek, M., Kovar, V., Baisa, V., & Kocincova, L. (2014). Ex-
trinsic corpus evaluation with a collocation dictionary task. In N. C. C., Choukri, K.,
Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., & Piperidis,
S., editors, Proceedings of the Ninth International Conference on Language Resources
and Fvaluation (LREC’14), Reykjavik, Iceland. European Language Resources Associ-
ation (ELRA), pp. 454-552.

Kilgarriff, A., Rychly, P., Smrz, P., & Tugwell, D. (2004). The Sketch Engine. In Williams, G.
& Vessier, S., editors, Proceedings of the 11th EURALEX International Congress, Lo-
rient, France. Université de Bretagne-Sud, Faculté des lettres et des sciences humaines,
pp- 105-115.

Pearce, D. (2002). A comparative evaluation of collocation extraction techniques. In Third
International Conference on Language Resources and Evaluation, LREC’02, pp. 1530—
1536.

Pomikalek, J. (2011). Removing boilerplate and duplicate content from web corpora. PhD
en informatique, Masarykova univerzita, Fakulta informatiky.

Rychly, P. (2007). Manatee/bonito-a modular corpus manager. In 1st Workshop on Recent
Advances in Slavonic Natural Language Processing, pp. 65-70.

This work is licensed under the Creative Commons Attribution ShareAlike 4.0 International
License.
http://creativecommons.org/licenses/by-sa/4.0/

404

http://creativecommons.org/licenses/by-sa/4.0/

	Longest–commonest Match

