TnT — A Statistical Part-of-Speech Tagger

Thorsten Brants
Saarland University, Computational Linguistics
thorsten@coli.uni-sb.de

Contents
1 What is TnT?
2 Installation

3 File Formats
3.1 Format of Untagged Files
3.2 Format of Tagged Files.
3.3 Format of the Lexicon
3.4 Format of then-gram File
3.5 Formatof Map Files e

4 Usage
4.1 Parameter Generation: tnt-para oo
4.2 Tagging: tnt e e e
4.3 Counting Differences: tnt-diff
4.4 Counting Tokens and Types: tnt-wc

7

Pre-Defined Models

5.1 The German Model
5.2 The English Model

Evaluation

6.1 Tagging the NEGRA corpus
6.2 Tagging the Penn Treebank
6.3 Summary of Part-of-Speech Tagging Results

Restrictions

Acknowledgements

References

More information on TnT is available on the WWW at
http://www.coli.uni-sb.de/ thorsten/tnt

License

Copyright 1993 — 1999 Thorsten Brants. All Rights Reserved.

Permission to use, copy and modify this software and its documentation is granted to non-
commercial entities without fee, provided that this license information and copyright notice appear
in all copies of the software and the documentation, and provided that all publications of results
produced with the help of TnT make a reference to this software.

A “non-commercial entity” is defined within the scope of this license as an educational in-
stitution (excluding a commercial training organisation), non-commercial research organisation,
registered charity, registered non-profit organisation, or full-time student.

Use of this software by any other person or organisation for any purpose, or the commercial
redistribution of this software (by itself or as part of another application) is allowed only under
express written permission of the copyright holder.

Disclaimer

TnT and its documentation is provided on an “as is” basis, with no guarantee of its veracity or
accuracy. No liability is accepted for any damage caused by its use.

1 What is TnT?

TnT, the short form of Trigrams’n’Tags, is a very efficient statistical part-of-speech tagger that is
trainable on different languages and virtually any tagset. The component for parameter generation
trains on tagged corpora. The system incorporates several methods of smoothing and of handling
unknown words.

TnT is not optimized for a particular language. Instead, it is optimized for training on a large
variety of corpora. Adapting the tagger to a new language, new domain, or new tagset is very
easy. Additionally, TnT is optimized for speed.

The tagger is an implementation of the Viterbi algorithm for second order Markov models (cf.
Rabiner, 1989). The main paradigm used for smoothing is linear interpolation, the respective
weights are determined by deleted interpolation (Brown, Pietra, deSouza, Lai, & Mercer, 1992).
Unknown words are handled by a suffix trie and successive abstraction (Samuelsson, 1993).

The programs are developed under Solaris in ANSI C using the GNU C compiler. All programs
described here are command line oriented and require the user to be familar with Unix commands.

2 Installation

The installation on a Unix or Linux platform is easy. Other platforms are currently not supported,
but transfer to any platform running the GNU C compiler should be straight forward, since no
system specific functions are used.

The programs come in a compressed (gzip) archive file (tar), by default named tnt-1lin.tar.gz
for the Linux version and tnt-sol.tar.gz for the Solaris version. Move this file to a directory of
your choice. Here, a sub-directory tnt will be created, which contains all the necessary files. This
sub-directory is the installation directory and is named tnt in the rest of this document. Type

gzip -dc tnt-lin.tar.gz | tar xvf -

or

gzip -dc tnt-sol.tar.gz | tar xvf -
This uncompresses the archive and extracts all files to the installation directory.

Now, the installation directory contains four executables (which are described in section 4):

tnt tnt-diff tnt-para tnt-wc
as well as directories for the documentation and the language models.

Add the name of the installation directory (tnt) to the PATH environment variable to use
these four programs from any place in your directory hierarchy, and set the environment variable
TNT_MODELS to tnt/models, so that tnt can find the language model files. That’s it.

3 File Formats

Usually, there are two types of files the user has to deal with: the untagged input for the tagger
and the tagged output of the tagger.

Additionally, we describe the format of the parameter files for lexical and contextual probabil-
ities created by the parameter generation process. Optionally, the user can specify a mapping of
tags used by the tagger to an output tagset.

3.1 Format of Untagged Files

Each line starting with two percentage signs (%%) marks a comment and is ignored by the programs.

Each token of the text occupies its own line, delimited by a linefeed character (LF = 0x0a).
The token occupies all characters from the beginning of the line and must not contain white
space (TAB = 0x09, SPC = 0x20). If the line contains white space, all characters after the first
white space character are ignored (including this character). The tokens can be encoded using all
characters with codes 0x21. . .0xFF.

%% Brown Corpus
%% File N11, Sent 3
But

the

day

of

the

deadline
came

and

passed

and

the

men

who

had

scoffed

at

the

warnings
laughed

with
satisfaction

%% Brown Corpus
%% File N11, Sent 3

But cC
the DT
day NN
of IN
the DT
deadline NN
came VBD
and CcC
passed VBD
and CcC
the DT
men NNS
who WP
had VBD
scoffed VBN
at IN
the DT
warnings NNS
laughed VBD
with IN

satisfaction NN

a) untagged format
(one column)

b) tagged format

(two columns, separated by white space)

Figure 1: Format of untagged and tagged files

%% Lexicon created from the Brown corpus

o

thaw 6 NN 3 VB 3

thawed 3 VBN 3

thawing 2 VBG 2

the 62597 DT 62689 IN 1 JJ 2 NNP b5
theaf 1 NN 1

Who...

Figure 2: Part of a lexicon file

The file may contain empty lines. These can, e.g., be used to denote sentence or paragraph
breaks. Figure 1a shows an example of untagged text from the Brown corpus (Francis & Kucera,
1982). The first two lines are comments, the rest is part of the corpus.

By convention, files containing a corpus in this format get .t as their filename extension. The
file tnt/models/sample.t contains an untagged sample from the NEGRA corpus.

3.2 Format of Tagged Files

The format of tagged files is similar to that of untagged files. It extends the format by a second
column per line. The columns are separated by any number of white space (TAB = 0x09, SPC =
0x20). The first column is the token, the second column is the tag. Everything after the second
column is ignored.

Again, a line starting with two percentage signs (%%) is a comment and is ingored by the
programs. A tagged file may contain empty lines, but must not contain a line with only one
column. Figure 1b shows an example of tagged text.

By convention, files containing a corpus in this format get .tt as their filename extension. The
file tnt/models/sample.tt contains a tagged sample from the NEGRA corpus.

3.3 Format of the Lexicon

The lexicon is created during the parameter generation step by the program tnt-para (see section
4.1). Tt contains the frequencies of words and their tags as they occured in the training corpus.
These frequencies are used during tagging to determine lexical probabilities. Generally, the user
does not need to change the content of a lexicon file.

Every line in the lexicon starting with two percentage signs (%%) is a comment. A line with a
lexicon entry contains four or more columns (an even number), separated by white space. The first
column is the token, the second number is the frequency of this token in the training corpus. The
rest of the columns list the tags that occured with the tokens (odd numbered columns) together
with their frequencies (even numbered columns). The sum of the frequencies of all tags for a word
is equal to the number in the second column.

The lexicon may contain some special entries to inform the tagger how to process classes of
tokens, or to set processing details. They start with an at sign (@). Currently, the tagger recognizes
the following special lexicon entries:

%% n-grams, Brown corpus %% n-grams, Brown corpus
hh . hh .

NNP 62028 NNP 62028

NNP CC 2885 CC 2885

NNP cC CD 28 CD 28
NNP ccC NN 51 NN 51
Wh o Wb

NNP CD 912 CD 912

NNP CD cC 23 cC 23
NNP CD CD 7 CD 7
Wh ... hh ..

a) long form b) abbreviated form

Figure 3: Part of an n-gram file

entry description example match
@CARD tokens consisting of a sequence of decimal digits 42
@CARDPUNCT decimal digits followed by punctuation 42.
@CARDSUFFIX decimal digits followed by any suffix 42nd
@CARDSEPS decimal digits separated by dots, dashes, etc. 4.2
QUNKNOWN tag frequencies to handle unknown words 777

(if unknown word mode 1 is selected for tnt)
QUSECASE use upper/lower case of words n.a.

(this entry is only followed by either 0 or 1)
As an example, the lexicon entry
QCARDPUNCT 527 ADJA 488 ADV 32 CARD 3 TRUNC 4

specifies that decimals followed by punctuation occured 527 times as a token in the training corpus.
These were tagged as ADJA 488 times, as ADV 32 times, etc. (this entry is taken from the lexicon
that was generated using the German NEGRA corpus). Now, if the tagger detects such a sequence
and cannot find another entry for it in the lexicon, it takes this distribution to calculate lexical
probabilities.

The special entry @USECASE indicates, if upper/lower case information should be used (GUSECASE
1) or should not (QUSECASE 0).

Figure 2 shows a part of a lexicon file. By convention, files containing a lexicon in this format
get .lex as their filename extension. The files tnt/models/negra.lex and susanne.lex contain
examples of lexicon files.

3.4 Format of the n-gram File

The n-gram file is, like the lexicon file, created during the parameter generation step by tnt-para.
It contains the contextual frequencies for uni-, bi-, and trigrams. Generally, the user does not
need to change the content of an n-gram file.

Every line starting with two percentage signs (%%) is a comment. A line for an n-gram entry
contains two (unigrams), three (bigrams) or four (trigrams) columns. All but the last column
contain tags, the last column contains the frequency of that particular n-gram in the training
corpus.

Bigrams and trigrams can use an abbreviated form of an entry. If a line starts with one TAB
character (0x09), the first tag of the previous line is repeated, if it starts with two TAB characters,
the first two tags are repeated. Usually, n-gram files use the abbreviated form to use less space
on disk.

Figure 3 shows an example of an n-gram file. By convention, files containing n-grams in this
format get .123 as their filename extension. The files tnt/models/negra.123 and susanne.123

contain examples of n-gram files.

3.5 Format of Map Files

The purpose of a map file is mapping the tags after tagging but before they are written to a file.
This can be done either if some names of tags in subsequent processing are different from those
in the language model, or if there is more information in the tagset used by the tagger than is
needed by subsequent processing steps. In the latter case, it is better to provide the tagger with
a larger tagset, and map tags after tagging to the smaller tagset, than training the tagger on the
smaller tagset itself (cf. Brants, 1997).

The format of the map file is line oriented. The first column is the original tag as used by the
tagger, the second column (separated by white space) is the corresponding tag that the tagger
should write to the output. The file tnt/models/susanne2.map contains a mapping from a larger
Susanne tagset (159 tags), which is described in (Sampson, 1995), to a smaller tagset consisting
of 62 tags. The latter tagset makes broader distinctions and takes only the first two characters of
the original tagset into account.

4 Usage
The application of TnT consists of two steps:

1. parameter generation
2. tagging

Step 1 creates the model parameters from a tagged training corpus. It is performed when you
start to use the tagger, or when you want to modify the model parameters by using a different
or larger corpus. Alternatively, you can use one of the pre-defined models for German or English
(see section 5).

Step 2 applies the model parameters to new text and performs the actual tagging.

The rest of this section describes the program for parameter generation (tnt-para), the tagger
(tnt), and two helper programs for comparing tagged files (tnt-diff) and for counting (tnt-wc).
The programs give a short summary when started without parameters (except tnt-wc, which
shows its parameters when started with tnt-wc -h).

4.1 Parameter Generation: tnt-para

The parameter generation requires a tagged training corpus in the format described in section
3.2. The training corpus should be large and the accuracy of assigned tags should be as high as
possible. Generally, the larger the corpus and the higher the accuracy of the training corpus, the
better the performance of the tagger.
Parameter generation is started as follows:
tnt-para [options] <corpusfile>

<corpusfile> is the file containing the tagged training corpus; if the special name - (a minus
sign) is given as the file name, standard input (stdin) is read.

The file may be compress:ed, gzip:ed, or bzip2:ed, which is recognized by the suffixes .Z,
.gz, and .bz2.

By default, the program generates lexical and contextual frequencies from the training corpus
and stores them in two files in the current working directory. The names are the same as for
the corpus file, but with the extensions .lex and .123, respectively.

[options] is one or more of the following:

-h : display a short command line summary; the same summary is shown when you run tnt-para
without parameters.

-i : ignore case; all upper case characters are mapped to lower case characters, and the lexicon
will contain lower case entries only.

-1 : generate lexicon only; by default, lexicon and n-grams are generated, this option suppresses
the n-grams.

-n : generate n-grams only; by default, lexicon and n-grams are generated, this option suppresses
the lexicon.

-oname : use name as the base name for output files; by default, the name of the corpus is used
as the base name for output files. This option allows you to specify a different name, the
resulting output files will be name.lex and name. 123.

-v : generate verbose n-grams; by default, the abbreviated form for n-gram files will be created.
By using this option, the program generates the long form (cf. section 3.4).

Example: the current directory contains the file mycorpus.tt, and you want to generate model
parameters with all default options (which is probably the right choice in most of the cases). Then
type

tnt-para mycorpus.tt
This creates two files in the current directory, mycorpus.lex and mycorpus. 123, containing the
lexical and contextual frequencies.

Example: the current directory contains the file mycorpus.tt, and you want to generate a
model that ignores upper/lower case and should be named my2. Then type:

tnt-para -i -o my2 mycorpus.tt
This creates two files in the current directory, my2.lex and my2.123, containing a lexicon with
lower case characters only and the contextual frequencies.

4.2 Tagging: tnt

The tagging process requires two files containing the model parameters for lexical and contextual
frequencies, and an input file in the format described in section 3.1. The tagger uses only the first
column in each line of the input file, the rest is stripped. So the rest of the line can contain tags,
comments, or any other material without having influence on the tagging process.
The tagger is started as follows:
tnt [options] model corpus

model isthe name of the language model to be used. The tagger will look for three files: model.lex
and model. 123 are obligatory and contain the lexical and contextual frequencies as generated
by tnt-para. The third one, model.map, is optional. If it is found, it is used for mapping
the tags before emitting them (see section 3.5).

The files of the language model are first searched for in the current directory, then in the
directory pointed to by the environment variable TNT_MODELS. The files may be compress:ed,
gzip:ed, or bzip2:ed, which is recognized by the suffixes .Z, .gz, and .bz2.

corpus is the file with the text to be tagged in the format described in section 3.1 (one token per
line). Everything except the first column in each line is stripped and ignored.

The corpus may be compressed or gziped, which is recognized by the suffix .Z or .gz.
[options] is one or more of the following:

-alength : use a suffix trie of with maximum suffix length length to handle unknown words (default:
-a10)

-bfile : use file as a backup lexicon, i.e., if a word is not found in the lexicon, try to find it in the

backup lexicon first, before applying the unknown word handler.

-dmode : use sparse data mode mode, which is one of the following (default: -d4).

-m

-nn :

1/c : replace zero frequencies by the constant ¢. Example: -d1/0.4 replaces 0 by 0.4. The
slash and ¢ can be omitted, in this case 0.5 is used as the constant.

2/c¢ : add constant ¢ to all frequencies. Example: -d2/0.3 adds 0.3 to all frequencies. The
slash and ¢ can be omitted, in this case 0.5 is used as the constant.

4/X1/A2 : use linear interpolation for smoothing. A; is used as the weight for unigrams,
A2 is used as the weight for bigrams, (1 — Ay — A2) is used as the weight for trigrams.
Example: -d4/0.2/0.3 sets A\; to 0.2, Ay to 0.3, and A3 implicitly to 0.5. The slashes
and lambdas can be omitted, in this case the weights are determined automatically by
deleted interpolation (which is the default mode for the program).

: displays a short command line summary; the same summary is displayed when running the

program without parameters.

: copy HTML tags from input directly to output without tagging. No modifications are made

to lines containing HTML tags, they are treated as if they were not present in calculating
context probabilities. The form of an HTML tag is: first non-space character in the line is
<’ and last non-space character is ">’.

: unknown words are marked in the ouput with an asterisk (*) in the last column.

use n-grams for tagging, where n = 1, 2,3. Default: -n3

-umode : use mode mode to handle unknown words. mode is one of the following: (default: -u3)

0 No unknown words allowed. The tagger exits with an error when detecting an unknown
word;

1 Take lexicon entry QUNKNOWN to determine lexical probabilities for unknown words;
2 combine statistics of all words to handle unknown words;

3 combine statistics of all singletons (words occuring once) to handle unknown words.

-vnum : set verbosity to num, where num is one of the following (default: -v3):

-z6

-Zp

0 silent;
1 print progress info on stderr (startup, lambdas, dots. . .);
2 print header info in tagged output (source, model, date, ...);

3 print both progress and header info.

: output alternative tag if probability is at least 1/6 of the best tag. Example: -z100 ouputs

the alternative tag if its probability is at least one hundredth of the best one.

cut-off path if the probability is outside beam 3 (default: -Z1000). Finding the best path

is not guaranteed when using this option. But setting f = 1000 causes almost no changes
in the output in practical cases, and it has the advantage ofsignificantly increasing tagging
speed. If necessary, this option can be turned off by setting -Z0.

The difference between -z0 and -Zg is that —-z6 calculates more than one path per sequence
in order to assign alternative tags (try -z100), and that -Zg restricts the search space for
the best path. You may use both options simultaneously, but setting 8 > 3 is senseless (do
not use the options if you do not understand this).

Example: the current directory contains the parameter files mycorpus . lex and mycorpus. 123,
created previously. Additionally, it contains new text in file newcorpus.tt in the format described
in section 3.1 (one token per line). Type

tnt mycorpus newcorpus.tt > newcorpus.tts
This uses the tagger with default options (trigram mode; smoothing is done by linear interpolation,
weights are calculated by deleted interpolation; unknown words are handled with a suffix trie using
suffixes of up to 10 characters), the lexical parameters mycorpus.lex, the contextual parameters
mycorpus.123, and tags the words in newcorpus.tt. QOutput is written to standard output
(stdout), which is redirected to newcorpus.tts by the last component of the command (by
convention, statistically tagged files get the suffix .tts).

Example: ignore upper/lower case and use the previously generated parameter files my2.lex
and my2.123 (these were generated with the option -i of tnt-para). For smoothing use linear
interpolation with the fixed weights Ay = 0.1, Ay = 0.2, and A3 = 0.7:

tnt -d4/0.1/0.2 my2 newcorpus.tt > newcorpus.tts
Again, the output is redirected to the file newcorpus.tts.

4.3 Counting Differences: tnt-diff

If you have a file containing the correct tags (e.g., created by manual editing), you can compare
the correct version with the statistically tagged version.
The program for counting differences is started with
tnt-diff [options] <original file 1> <new file 2>

<original file 1> is the original file, containing the correct tag assignments.

<new file 2> is the statistically tagged file.

The files may be compress:ed, gzip:ed, or bzip2:ed, which is recognized by the suffixes .Z,
.gz, and .bz2.

[options] is one or more of the following:

-h : display a short command line summary; the same summary is shown when running the
program without parameters.

-1lexiconfile : use lexiconfile as a lexicon to determine known words and give separate counts for
known and unknown words.

Example: compare the files A0l.tt and AQ1l.tts of the brown corpus. The first file is the
original, the second file is generated by tnt using a model that is based on all other Brown corpus
files (A02.tt ...R09.tt).

tnt-diff AQO1.tt AOl.tts
The output looks like the following:

Comparing .. (2267 tokens)

Overall result:

Equal : 2186 / 2267 (96.43%)
Different: 81 / 2267 (3.57%)

The first line shows the total number of tokens in each of the files, the third line shows the
number and percentage of tags identical in both files, and the fourth line shows the number and
percentage of tags different in both files.

Example: compare the files A0l.tt and AOl.tts and show counts separately for known and
unknown words. Known words are all those in brown-a02-r09.lex:

tnt-diff -1 brown-a02-r09.lex AO1l.tt AO1l.tts
The output looks like the following;:

10

Comparing .. (2267 tokens)

Overall result:

Equal : 2186 / 2267 (96.43%)
Different: 81 / 2267 (3.57%)

2219 tokens known (97.887), 48 unknown (2.12%).

Counts for known tokens:
Equal : 2142 / 2219 (96.53%)
Different: 77/ 2219 (3.47%)

Counts for unknown tokens:
Equal : 44 / 48 (91.67%)
Different: 4 / 48 (8.33%)

The first part is identical to the previous example, showing the overall accuracy. Afterwards, the

fractions of known and unknown tokens are shown, and their accuracies.

4.4 Counting Tokens and Types: tnt-wc

This program can be used to count tokens, types, and different tags in a corpus. It is started with
tnt-wc [options] <corpusfile> ...

<corpusfile> is the file containing the corpus in the format described above (one token per line;
either tagged or untagged). You can give as many corpus files as you want, the counts are
printed separately for each file, and a sum for the tokens. If no file is given, standard input
(stdin) is read. Also, the minus sign (=) denotes stdin as input.

The files may be compress:ed, gzip:ed, or bzip2:ed, which is recognized by the suffixes .Z,
.gz, and .bz2.

[options] is one or more of the following:
-h : Display a short command line summary.
-i : Ignore upper/lower case of tokens.

-1 : Count word types.

-t : Count different tags.

-w : Count word tokens.

If none of -1, -t, and -w is given, the program prints all these counts.

Example: Count tokens, types and different tags of all files ending in .tt.gz in the current
directory. The files are unzipped on the fly.
tnt-wc *.tt.gz
The output looks like the following;:

call.tt.gz 2267 tokemns, 840 types, 40 tags
cal2.tt.gz 2297 tokemns, 901 types, 38 tags
ca03.tt.gz 2299 tokemns, 804 types, 39 tags
cr07.tt.gz 2493 tokens, 709 types, 38 tags
cr08.tt.gz 2389 tokens, 1061 types, 40 tags
cr09.tt.gz 2367 tokens, 1064 types, 41 tags
sum 1170815 tokens

11

5 Pre-Defined Models

Two language models come together with the distribution of TnT: a German Model that is trained
on the corpus of the NEGRA project (Skut, Krenn, Brants, & Uszkoreit, 1997), and one trained
on the Susanne Corpus (Sampson, 1995). These are described in the following sections.

5.1 The German Model

Parameter files for the German model can be found in the directory tnt/models. The model
is trained on the corpus of the NEGRA project, Saarbriicken, currently consisting of about
300.000 tokens of newspaper texts (Frankfurter Rundschau). It uses the Stuttgart-Tiibingen-
Tagset (STTS) (Thielen & Schiller, 1995). The corpus was partly tagged at the Institut fiir
Maschinelle Sprachverarbeitung, Stuttgart, and partly at the Department of Computational Lin-
guistics, Saarbriicken.

Lexical frequencies are stored in the file negra.lex, contextual frequencies are stored in
negra.123. To use the model for tagging, be sure that TnT can find it, so either keep it in
the current directory or in the directory pointed to by the environment variable TNT_MODELS. If
you want to tag the file mycorpus.t, run the tagger with the commandline

tnt negra mycorpus.t > mycorpus.tts
and the results are stored in mycorpus.tts. Average accuracy on unseen German newspaper text
is above 96%.

5.2 The English Model

Parameter files for the English model can be found in the directory tnt/models. The model is
trained on the Susanne corpus, consisting of about 150.000 tokens. The model uses the base
tagset, consisting of all uppercase characters and digits, but without the lower case extensions (cf.
Sampson, 1995).

Lexical frequencies are stored in the file susanne.lex, contextual frequencies are stored in
susanne.123. To use the model for tagging, be sure that TnT can find it, so either keep it in the
current directory or in the directory pointed to by the environment variable TNT_MODELS. If you
want to tag the file mycorpus.t, run the tagger with the commandline

tnt susanne mycorpus.t > mycorpus.tts
and the results are stored in mycorpus.tts. Average accuracy on unseen English text from the
same domains as the Susanne corpus is around 96%.

The tagset of the previous model contains 159 tags. We defined a mapping to a second tagset,
that makes less fine-grained distinctions and contains 62 tags only. The mapping is stored in the
file susanne2.map. Otherwise, the model parameters are the same as in the previous example. To
map the output of the tagger to the smaller tagset, use the model susanne2:

tnt susanne2 mycorpus.t > mycorpus.tts
Now, the output will be written using the smaller tagset.

6 Evaluation

We evaluate the tagger’s performance under several aspects. First of all, we determine the tagging
accuracy averaged over ten iterations. The overall accuracy, as well as separate accuracies for
known and unknown words are measured.

Second, learning curves are presented, that indicate the performance when using training
corpora of different sizes, starting with as few as 1,000 tokens and ranging to the size of the entire
corpus (minus the test set).

An important characteristic of statistical taggers is that they not only assign tags to words but
also probabilities in order to rank different assignments. The third set of experiments investigates
alternative assignments that are “close to” the best assignment, with “close to” referring to the
distance of the respective probabilities.

12

All tests are performed on partitions of the corpora that use 90% as training set and 10% as
test set, so that the test data is guaranteed to be unseen during training. Each result is obtained
by repeating the experiment 10 times with different partitions and averaging the single outcomes.

The tagging accuracy is the percentage of correctly assigned tags. We distinguish the overall
accuracy, taking into account all tokens in the test corpus, and separate accuracies for known and
unknown tokens. The latter are interesting, since usually unknown tokens are much more difficult
to process than known tokens, for which a list of valid tags can be found in the lexicon.

6.1 Tagging the NEGRA corpus

The German NEGRA corpus consists of newspaper texts (Frankfurter Rundschau) that are anno-
tated with predicate-argument structures (Skut et al., 1997). It was developed in the project NE-
GRA (Nebenldufige grammatische Verarbeitung; Concurrent Grammar Processing) at the Saar-
land University, Saarbriicken. Part of it was part-of-speech tagged at the IMS Stuttgart. The
annotation consists of four parts: 1) a non-projective predicate-argument structure, 2) phrasal
categories (NP, PP, ...) that are annotated as node labels, 3) grammatical functions (subject,
direct object, pre-nominal genitive, ...) that are annotated as edge labels, and 4) part-of-speech
tags. This evaluation only uses the part-of-speech annotation.

By the time the experiments were performed, October 1998, it had a size of approx. 17,000
sentences (300,000 tokens).

Tagging accuracies for the NEGRA corpus are shown in table 4.

Figure 5 shows the learning curve of the tagger, i.e., the accuracy depending on the amount of
training data. Training length is the number of tokens used for training. Each training length was
tested ten times, training and test sets were disjoint, results were averaged. The training length
is given on a logarithmic scale.

It is remarkable that tagging accuracy for known words is very high even for very small training
corpora. This means that we have a good chance of getting the right tag if a word is seen at least
once during training. Average percentages of unknown tokens are shown in the bottom line of
each diagram.

We exploit the fact that the tagger not only determines tags, but also assigns probabilities. If
there is an alternative that has a probability “close to” that of the best assignment, this alternative
can be viewed as almost equally well suited. The notion of “close to” is expressed by the distance
of probabilities, and this in turn is expressed by the quotient of probabilities. So, the distance
of the probabilities of a best tag tp.s: and an alternative tag tq;; is expressed by p(tpest)/p(tait),
which is some value greater or equal to 1 since the best tag assignment has the highest probability
(we use the -z option of TnT).

Figure 6 shows the recall when taking more and more alternatives into account. Here, an
assignment is counted as correct if either of the alternatives is correct. The curves start as distance
factor 1, i.e. only the best tag (or alternative tags with identical probabilities) is assigned. Note
that this is the standard notion of accuracy, and the percentages at this point are the same as the
averages in table 4.

6.2 Tagging the Penn Treebank

We use the Wall Street Journal as contained in the Penn Treebank for our experiments. The
annotation consists of four parts: 1) a context-free structure augmented with traces to mark
movement and non-contiguous constituents, 2) phrasal categories that are annotated as node
labels, 3) a small set of grammatical functions that are annotated as extensions to the node labels,
and 4) part-of-speech tags (Marcus, Santorini, & Marcinkiewicz, 1993). This evaluation only uses
the part-of-speech annotation.

The Wall Street Journal part of the Penn Treebank consists of approx. 50,000 sentences (1.2
million tokens).

Tagging accuracies for the Penn Treebank are shown in table 7.

13

Table 4: Part-of-speech tagging accuracy for the NEGRA corpus, averaged over 10 test runs,
training and test set are disjoint. The table shows the percentage of unknown tokens, separate
accuracies and standard deviations for known and unknown tokens, as well as the overall accuracy.

percentage known unknown overall
unknowns acc. o acc. o acc. o
NEGRA corpus | 131% | 97.7% 0.28 | 86.6% 1.01 | 96.3% 0.27

NEGRA Corpus: POS Learning Curve

100 —

| / — Overall
90 min =77.5%
/ e max=96.3%

=
é 80 L / — Known
=] .
£ min =95.9%
<ﬂ° 70 max=97.7%
60 ——— Unknown
i min =59.4%
50 I I I I I I I I | max=80.6%
1 2 5 10 20 50 100 200 500 1000x1000 Training Length

50.8 46.4 414 36.0 30.7 23.0 183 143 10.3 8.4 avg. percentage unknown

Figure 5: Learning curve for tagging the NEGRA corpus. The training sets of variable sizes as
well as test sets of 10,000 tokens were randomly chosen. Training and test sets were disjoint, the
procedure was repeated 10 times and results were averaged. Percentages of unknowns for 500k
and 1000k training are determined from an untagged extension.

NEGRA Corpus: Remaining Ambiguity

100
= Qverall

o—=0 min =96.3%

e
99
/,/ //9-_—7 max=99.2%
98

Py
o

_ By — Known
= & min=97.7%
é 97 / 8 max=99.3%
/ —e\T Unknown
96 = min=86.6%
05 2 max=99.1%

T 7T | I | T —
1 2 5 10 20 50 100 500 2000 10000 beam size

1.00 1.03 1.07 1.11 1.16 1.25 1.34 1.45 1.63 1.79 1.97 2.21 2.36 avg. # tags/token

Figure 6: Tagging accuracy for the NEGRA corpus when some ambiguity remains after tagging.
The best tag tpest and all tags tq;; with probabilities within the beam £ (having p(tpest)/p(tait) < 5)
are assigned. The numbers at the bottom line indicate the average number of assigned tags per
token.

Table 7: Part-of-speech tagging accuracy for the Penn Treebank. The table shows the percentage
of unknown tokens, separate accuracies and standard deviations for known and unknown tokens,
as well as the overall accuracy.

percentage known unknown overall
unknowns acc. o acc. o acc. o
Penn Treebank | 2.8% | 97.1% 0.12 | 84.2% 0.54 | 96.7% 0.13

Penn Treebank: POS Learning Curve

100
_— —— Opverall
90 min =72.8%

/ max=96.7%

.
£ 80 - Known
E / M min =95.7%
<‘E 70 max=97.1%
60 / —e— Unknown
min =44.1%
max=79.5%
50 7 | | | | | | | | ’
1 2 5 10 20 50 100 200 500 1000 x1000 Training Length

45.9 40.3 33.5 25.8 19.5 129 9.4 6.8 4.3 3.0 avg. percentage unknown

Figure 8: Learning curve for tagging the Penn Treebank. The training sets of variable sizes as
well as test sets of 100,000 tokens were randomly chosen. Training and test sets were disjoint, the
procedure was repeated 10 times and results were averaged.

Penn Treebank: Remaining Ambiguity

100

et . e o Overall
99 — min =96.6%

// max=99.4%
98

— —e— Known
S N
g / & min=97.1%
~ 97 7 & max=99.5%
——o— Unknown
96 ’g\z min =81.2%
05 | | | ~ max=93.2%

I I I I I I I I 1
1 2 5 10 20 50 100 500 2000 10000 beam size 8
1.00 1.02 1.06 1.09 1.12 1.17 1.21 1.26 1.32 1.37 1.42 1.50 1.55 avg. # tags/token

Figure 9: Tagging accuracy for the Penn Treebank when some ambiguity remains after tagging.
The best tag tpes; and all tags tq;; with probabilities within the beam 8 (having p(tpest)/p(tair) < B)
are assigned. The numbers at the bottom line indicate the average number of assigned tags per
token. Results for unknowns are below 95% and therefore not shown in the diagram.

15

Figure 8 shows the learning curve of the tagger, i.e., the accuracy depending on the amount of
training data. Training length is the number of tokens used for training. Each training length was
tested ten times, training and test sets were disjoint, results are averaged. The training length is
given on a logarithmic scale.

As for the NEGRA corpus, tagging accuracy is very high for known tokens even with small
amounts of training data.

We exploit the fact that the tagger not only determines tags, but also assigns probabilities. If
there is an alternative that has a probability “close to” that of the best assignment, this alternative
can be viewed as almost equally well suited. The distance of the probabilities of a best tag tpes:
and an alternative tag t,;; is expressed by p(tpest)/p(tait), which is some value greater or equal to
1 since the best tag assignment has the highest probability (we use the -z option of TnT).

Figure 9 shows the recall when taking more and more alternatives into account. Here, an
assignment is counted as correct if either of the alternatives is correct. The curves start as distance
factor 1, i.e. only the best tag (or alternative tags with identical probabilities) is assigned. Note
that this is the standard notion of accuracy, and the percentages at this point are the same as the
averages in table 7.

6.3 Summary of Part-of-Speech Tagging Results

Average part-of-speech tagging accuracy is between 96% and 97%, depending on language and
tagset, which is at least en par with state-of-the-art results found in the literature.

Accuracy for known tokens is significantly higher than for unknown tokens. For the German
newspaper data, results are 11% points better when the word was seen before and therefore is in
the lexicon, than when it was not seen before (97.7% vs. 86.6%). Accuracy for known tokens is
high even with very small amounts of training data. As few as 1000 tokens are sufficient to achieve
95%-96% accuracy for them. It is important for the tagger to have seen a word at least once.

Stochastic taggers assigns probabilities to tags. We exploit the probabilities to leave selected
ambiguity after tagging if the probability of the second best assignment is close to that of the best
assignment. This identifies reliable and unreliable assignments and we leave some ambiguity in
the output of the tagger if the assignment of a unique tag would be unreliable. Allowing 103 tags
in the output for 100 tokens increases accuracy by approx. 1% point for both the German and
English data.

7 Restrictions

e Tokens and tags cannot contain white space (white space delimits columns).

e Tokens and tags cannot start with two percentage signs (%% at the beginning of a line starts
a comment).

e Tokens cannot consist of an at sign (@) followed by any sequence of characters (these are
special lexicon entries).

e There can be at most 32766 (2!° — 2) different tags (they are encoded using short integers).

e The maximum length of a line within any file is restricted to 16383 characters (this is the
size of the input buffer).

Acknowledgements
Many thanks go to Hans Uszkoreit for his support during the development of TnT. Thanks go also
to the Deutsche Forschungsgemeinschaft for financing the work by a grant in the Graduiertenkolleg

Kognitionswissenschaft Saarbriicken. Large annotated corpora are the pre-requisite for developing
and testing part-of-speech taggers, and they enable the generation of high-quality language models.

16

Therefore, I would like to thank all the people who were involved in building the Stuttgarter
Referenzkorpus, the NEGRA Corpus, the Penn Treebank and the Susanne Corpus. And, last but
not least, I would like to thank the users of TnT who provided me with bug reports and valuable
suggestions for improvements.

References

Brants, T. (1997). Internal and external tagsets in part-of-speech tagging. In Proc. of eurospeech.
Rhodes, Greece.

Brown, P. F., Pietra, V. J. D., deSouza, P. V., Lai, J. C., & Mercer, R. L. (1992). Class-based
n-gram models of natural language. Computational Linguistics, 18(4), 467-479.

Francis, N. W., & Kucera, H. (1982). Frequency analysis of English usage. Boston: Houghton
Mifflin.

Marcus, M., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated corpus of
English: The Penn Treebank. Computational Linguistics, 19(2), 313-330.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in speech
recognition. In Proceedings of the IEEE (Vol. 77, pp. 257-285).

Sampson, G. (1995). English for the computer. Oxford: Oxford University Press.

Samuelsson, C. (1993). Morphological tagging based entirely on Bayesian inference. In 9th nordic
conference on computational linguistics NODALIDA-93. Stockholm University, Stockholm,
Sweden.

Skut, W., Krenn, B., Brants, T., & Uszkoreit, H. (1997). An annotation scheme for free word
order languages. In Proceedings of the fifth conference on applied natural language processing
ANLP-97. Washington, DC.

Thielen, C., & Schiller, A. (1995). Ein kleines und erweitertes Tagset fiirs Deutsche. In Tagungs-
berichte des Arbeitstreffens Lexikon + Text 17./18. Februar 1994, Schlofi Hohentibingen.
Lexicographica Series Maior. Tiibingen: Niemeyer.

17

