Efficient Web Crawling for Large Text Corpora

Vit Suchomel

Natural Language Processing Centre
Masaryk University, Brno, Czech Republic
xsuchom2@fi.muni.cz

ABSTRACT

Many researchers use texts from the web, an easy source
of linguistic data in a great variety of languages. Building
both large and good quality text corpora is the challenge
we face nowadays. In this paper we describe how to deal
with inefficient data downloading and how to focus crawling
on text rich web domains. The idea has been successfully
implemented in SpiderLing. We present efficiency figures
from crawling texts in American Spanish, Czech, Japanese,
Russian, Tajik Persian, Turkish and the sizes of the resulting
corpora.

Categories and Subject Descriptors

1.2.7 [Computing Methodologies|: Artificial Intelligence—

Natural Language Processing

Keywords

Crawler, web crawling, corpus, web corpus, text corpus

1. INTRODUCTION

Most documents on internet contain data not useful for text
corpora, such as lists of links, forms, advertisement, iso-
lated words in tables, and other kind of text not comprised
of grammatical sentences. Therefore, by doing general web
crawls, we typically download a lot of data which gets fil-
tered out during post-processing. This makes the process of
web corpus collection inefficient.

To be able to download large collections of web texts in a
good quality and at a low cost for corpora collection man-
aged by SketchEngine', we developed SpiderLing—a web
spider for linguistics. Unlike traditional crawlers or web in-
dexers, we do not aim to collect all data (e.g. whole web
domains). Rather than that we want to retrieve many doc-
uments containing full sentences in as little time as possible.

*http://nlp.fi.muni.cz/
http://sketchengine.co.uk/

Jan Pomikalek
Lexical Computing Ltd.
xpomikal@fi.muni.cz

We have experimented with using third party software for
obtaining text documents from the web. Following the ex-
ample of other researchers [2, 3, 1], we have used Heritrix
crawler? and downloaded documents for the language in in-
terest by restricting the crawl to national web domains of
the countries where the language is widely used (e.g. .cz
for Czech). Though we managed to compile corpora of up
to 5.5 billion words in this way [6], we were not satisfied
with the fact that we need to keep the crawler running for
several weeks and download terabytes of data in order to re-
trieve a reasonable amount of text. It turned out that most
downloaded documents are discarded during post-processing
since they contain only material with little or no good qual-
ity text.

2. ANALYSIS OF PREVIOUS WORK

We were interested to know how much data we download
in vain when using Heritrix and if the sources which should
be avoided can be easily identified. In order to get that
information we analyzed the data of a billion word corpus
of European Portuguese downloaded from the .pt domain
with Heritrix. For each downloaded web page we computed
its yield rate as

final data

ield rate = ————————
yrewa rate downloaded data

where final data is the number of bytes in the text which the
page contributed to the final corpus and downloaded data
is simply the size of the page in bytes (i.e. the number
of bytes which had to be downloaded). Many web pages
have a zero yield rate, mostly because they get rejected by a
language classifier or they only contain junk or text duplicate
to previously retrieved text.

We grouped the data by web domains and computed a yield
rate for each domain as the average yield rate of the con-
tained web pages. We visualized this on a scatterplot which
is displayed in Fig. 1. Each domain is represented by a single
point in the graph.

It can be seen that the differences among domains are enor-
mous. For example, each of the points in the lower right
corner represents a domain from which we downloaded more
than 1 GB of data, but it only yielded around 1kB of text.
At the same time, there are domains which yielded more
than 100 MB of text (an amount higher by five orders of mag-
nitude) from a similar amount of downloaded data. These

’http://crawler.archive.org/

10

- yield rate = 0.1
- - yield rate = 0.01
— yield rate = 0.001

100k xxx domains .pt

10’ F
m
g
2 10°F
[
N
@
©
g
= 10°F
£
i

10

10°F

e
10108 10
Downloaded data size (bytes)
Figure 1: Web domains yield rate for a Heritrix

crawl on .pt

domains are positioned in the upper right corner of the
graph.

Next, we selected a set of yield rate thresholds and computed
for each threshold the number of domains with a higher yield
rate and the sum of downloaded and final data in these do-
mains. The results can be found in Table 1.

It is easy to see that as the yield rate threshold increases the
size of the downloaded data drops quickly whereas there is
only a fairly small loss in the final data. This suggests that
by avoiding the domains with low yield rate a web crawler
could save a lot of bandwidth (and time) without making
the final corpus significantly smaller.

For instance if only domains with a yield rate above 0.0128
were crawled, the amount of downloaded data would be
reduced from 1289 GB to 86 GB (to less than 7%) while
the size of the final data would only drop from 4.81 GB to
3.62GB (73.7%). This is of course only a hypothetical situ-
ation, since in practice one would need to download at least
several pages from each domain in order to estimate its yield
rate. Nevertheless, it is clear that there is a lot of room for
making the crawling for web corpora much more efficient.

We observe many web domains offer documents of a simi-
lar type. For example, a news site contains short articles, a
blog site contains blog entries, a company presentation site
contains descriptions of the goods sold or products manu-
factured. We believe the quality of several documents (with
regard to building text corpora) on such sites could represent
the quality of all documents within the given domain.

One could argue that a segmentation by domains is too

11

Table 1: Sums of downloaded and final data size for
all domains above the given yield rate threshold

domains crawler final

yield rate | above the output | final data yield
threshold | threshold | size [GB] | size [GB] rate
none 51645 1288.87 4.91 | 0.0038

0 31024 1181.56 4.91 | 0.0042

0.0001 29580 705.07 4.90 | 0.0069
0.0002 28710 619.44 4.89 | 0.0079
0.0004 27460 513.86 4.86 | 0.0095
0.0008 25956 407.30 4.80 | 0.0118
0.0016 24380 307.27 4.68 | 0.0152
0.0032 22325 214.18 4.47 | 0.0209
0.0064 19463 142.38 4.13 | 0.0290
0.0128 15624 85.69 3.62 | 0.0422
0.0256 11277 45.05 2.91 | 0.0646
0.0512 7003 18.61 1.98 | 0.1064
0.1024 3577 5.45 1.06 | 0.1945
0.2048 1346 1.76 0.54 | 0.3068
0.4096 313 0.21 0.10 | 0.4762

coarse-grained since a domain may contain multiple web-
sites with both high and low yield rates. Though we agree,
we believe that identifying more fine-grained sets of web
pages (like a text rich discussion forum on a text poor goods
presentation site) introduces further complications and we
leave that for future work.

3. SPIDERLING

Simple web crawlers are not robust enough to suit our needs
(e.g. not supporting heavily concurrent communication, lack-
ing load balancing by domain or IP address, not able to
restart the crawling after a system crash). On the other
hand, the source code of sophisticated crawlers is too com-
plex to alter, making implementation of our way of efficient
web traversing difficult.

We came to the conclusion that the easiest way of imple-
menting our very specific requirements on web crawling is
to create a custom crawler from scratch. In order to reduce
the amount of unwanted downloaded content, the crawler
actively looks for text rich resources and avoids websites con-
taining material mostly not suitable for text corpora. Our
hope was that by avoiding the unwanted content we can not
only save bandwidth but also shorten the time required for
data postprocessing and building a web corpus of given size.

3.1 Improving the yield rate

Our primary aim is to identify high-yielding domains and to
avoid low-yielding ones. At the same time we want to make
sure that we do not download all data only from a few top-
yielding domains so that we achieve a reasonable diversity
of the obtained texts.

We collect information about the current yield rate of each
domain during crawling the web. If the yield rate drops
below a certain threshold we blacklist the domain and do not
download any further data from it. We define a minimum

Table 2: The yield rate threshold as a function of
the number of downloaded documents

documents | yield rate
count | threshold

10 0.00
100 0.01
1000 0.02
10000 0.03

amount of data which must be retrieved from each domain
before it can be blacklisted. Current limit is 8 web pages or
512kB of data, whichever is higher. The yield rate threshold
is dynamic and increases as more pages are downloaded from
the domain. This ensures that sooner or later all domains
get blacklisted, which prevents overrepresentation of data
from a single domain. Nevertheless, low-yielding domains
are blacklisted much sooner and thus the average yield rate
should increase.

The yield rate threshold for a domain is computed using the
following function:

t(n) =0.01- (logyq (n) — 1)

where n is the number of documents downloaded from the
domain. The function is based partly on the authors’ intu-
ition and partly on the results of initial experiments. Ta-
ble 2 contains a list of thresholds for various numbers of
downloaded documents.

We experimented with various parameters of the yield rate
threshold function. Fig. 2 shows how the average yield rate
changes in time with different yield rate threshold functions.
These experiments have been performed with Czech as the
target language. It can be seen that stricter threshold func-
tions result in higher average yield rate. However, too high
thresholds have a negative impact on the crawling speed
(some domains are blacklisted too early). It is therefore
necessary to make a reasonable compromise.

Note: We used the threshold functions from Fig. 2 in our
initial experiments. We selected an even less strict one (de-
fined in this section) later on during crawling various data
sources. It was a matter of balancing high yield rate versus
total amount of obtained data. Too much data was thrown
away due to a strict threshold. That is why the currently
used threshold function is not present in the figure. The
main point is that yield rate is strongly affected by the se-
lected threshold function.

3.2 Removing junk and duplicates

We use jusText® [5]—a heuristic based boilerplate removal
tool—embedded in SpiderLing to remove content such as
navigation links, advertisements, headers and footers from
downloaded web pages. Only paragraphs containing full sen-
tences are preserved.

Duplicate documents are removed at two levels: (i) original
form (text + HTML), and (ii) clean text as produced by

3http://code.google.com/p/ justext/

—T—T—
-8 No constraints

A t(n) =002 (logz(n) — 1)
0.08 He=@ t(n) =0.015- (log,o(n) — 1) (lessstrict) [.. ...i...0. .. il]

crawler output yield rate

[I [I I [I [I I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
time [hours]

I I
7 18 19 20

Figure 2: Average yield rate in time for various yield
rate threshold functions (crawling the Czech web)

jusText. Two correspondent checksums are computed for
each web page and stored in memory. Documents with pre-
viously seen checksums are discarded. Both kinds of removal
are done on-the-fly during the crawling to immediately prop-
agate the currently crawled documents’ yield rate into the
corresponding domain yield rate. This enables SpiderLing
to dynamically react to obtained data.

As a post-processing step, we also remove near-duplicates
using onion®. The deduplication is performed on paragraph
level. Paragpraphs consisting of more than 50 % word 7-
tuples encountered in previously processed data are removed.
Since such deduplication is a higly demanding task in terms
of both processor cycles and memory consumption, we did
not embed it into SpiderLing. Nonetheless, we are still con-
sidering such integration, since it would enable a more accu-
rate estimate of yield rates and thus improve the crawler’s
traversing algorithm.

We currently do not filter unwanted web content such as link
farms and machine generated texts. This may be a subject
to further research. Note though that some of such content
(e.g. excerpts of Wikipedia articles on link farms) is already
reduced in our current processing pipeline as a positive side
effect of deduplication.

4. RESULTS

4.1 Created corpora

During the development of the crawler we downloaded a
total of ca. 4TB Czech web pages in several web crawler
runs. This amounts to ca. 5 billion tokens after all post-
processing steps, including deduplication with onion. We
merged the corpus with a ca. 2 billion word Czech web
corpus we have collected previously by using Heritrix. Since
the two corpora overlapped to a high extent, the size of
the final Czech web corpus after deduplication is 5.8 billion
tokens.

As a next exercise we ran SpiderLing on Tajik Persian to find
out how the crawler deals with scarce online resources. We
started the crawl from 2570 seed URLs (from 475 distinct
domains) collected with Corpus Factory [4]. The crawling
finished in two days having no more URLs to download from.

“http://code.google.com/p/onion/

Table 3: Final corpora sizes obtained using Spider-
Ling

corpus size | crawling duration
target language [10° tokens] [days]
American Spanish 8.7 14.0
Arabic 6.6 28.0
Czech 5.0 24.4
Japanese 11.1 28.0
Russian 20.2 134
Tajik Persian 0.034 1.7
Turkish 3.1 7.0

Since then we focused on crawling widely spread languages
such as American Spanish, Japanese and Russian. There
are many resources in those languages available on the web,
which contributed to quick and effortless crawling.

Since the crawler supports constraining by internet top level
domain, the American Spanish corpus was downloaded from
national domains of 18 Hispanic American countries. Docu-
ments from the same country form a subcorpus of the result-
ing corpus. Such data may be useful for a research studying
varieties in the Spanish language spoken in America. It is
worth noting that 75% of documents in the corpus come
from three countries with the highest web presence: Ar-
gentina, Mexico and Chile.

There is an overview of all corpora recently built with Spi-
derLing in Table 3.

4.2 Yield rate

By applying yield rate thresholds on domains we managed
to reduce downloading data which is of no use for text cor-
pora and increased the overall average yield rate. Fig. 3
contains the same kind of scatterplot as displayed in Fig. 1,
this time on the data downloaded by SpiderLing with Czech
as a target language. This is a significant improvement over
the previous graph. For low-yielding domains only up to
1 MB of data is downloaded and high amounts of data are
only retrieved from high-yielding sources. Many points (i.e.
domains) are aligned along the line representing a yield rate
of 10 %. Furthermore, the crawling was stopped already at
the 512kB threshold in case of many bad domains.

Note that the graph in Fig. 3 does not take deduplication by
onion into account. It displays the size of the data as output
by the crawler (i.e. boilerplate removed by jusText, no ex-
actly same documents), not the final deduplicated texts size.
Even though the achieved improvement over the previous is
indisputable.

We were also interested in the development of the crawling
efficiency during crawling. We expected the yield rate to
slightly increase over time (the more data downloaded the
higher yielding domains selected). The results are pictured
by Fig. 4.

Contrary to our expectations, the measured efficiency grew
only slightly or stagnated in most cases. We still consider
this a good result because even the stagnating yield rates

10

- yield rate = 0.1
-~ yield rate = 0.01
— yield rate = 0.001
8| xxx domains .cz

10

10°F

._.
%

Crawler output size (bytes)
=
=y

6 11

10 10’ 10° 10 10

Downloaded data size (bytes)

10

Figure 3: Web domains yield rate for a SpiderLing
crawl on the Czech web

0.06

0.05

o
o
=

e
=]
@

crawler output yield rate

0.02

oy D

Am. Spanish
Arabic
: : : : : : : : : Czech
001 e e Tk
©-0 Japanese
#= Russian
; ; ; ; ; ‘ ‘ ‘ ‘ >=> Turkish
I T
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

raw data downloaded [GB]

Figure 4: Web domains yield rate for SpiderLing
crawls on six target languages

Table 4: Results of crawling the web for large text
corpora using SpiderLing

raw | crawler | crawler final

data | output | output | corpus final
target size size yield size yield
language [GB] [GB] rate [GB] rate
Am. Spanish | 1874 97.3 | 0.0519 | 44.14 | 0.0236
Arabic 2015 84.4 | 0.0419 58.04 | 0.0288
Japanese 2806 110.1 | 0.0392 | 61.36 | 0.0219
Russian 4142 260.1 | 0.0628 197.5 | 0.0477
Turkish 1298 51.4 | 0.0396 19.52 | 0.0150

were good (with regard to Table 1).

Crawling Japanese was an exception, since the rate kept
increasing almost all the time there. The reason may be
the starting rate was low. The inbuilt language dependent
models (character trigrams, wordlist) may not be adapted
well for Japanese and throw away good documents as well.
The less web resources in the target language, the sooner
the yield rate drops down. It can be demostrated by the
example of Tajik.

The initial yield rate obviously depends on the quality of the
seed (initial) URLs. (For example many URLs of electronic
newspaper articles in the target language give good initial
yield rate.) Irrespective of the seed URLs, the measurements
show that sooner or later, the program discovers enough
URLSs to be able to select good quality domains.

Unlike other languages, crawling Arabic, Japanese and Turk-
ish was not restricted to the respective national domains.
That inevitably led to downloading more data in other lan-
guages thus throwing away more documents. Considering
crawling efficiency in these cases on Fig. 4, the yield rate
also depends on constraining crawling to national top level
domains.

The yield rate may decrease after downloading a lot of data
(the amount depends on the web presence of the target lan-
guage). In the case of rare languages, the best (text rich)
domains get exhausted and the crawler has to select less
yielding domains. Concerning decreasing rate while crawl-
ing widely spread languages (like Russian), the reason may
lie in the design of the crawler. It may be obtaining data
from many domains concurrently (ca. 1000-2000 in case of
Russian), leaving potentially rich domains waiting and not
discovering their true potential.

The final data sizes and average yield rates obtained by
crawling five large languages are summarized in Table 4.
The final yield rate varies between 1.50% (Turkish) and
4.77% (Russian) which is a great improvement over a yield
rate of 0.38% achieved by Heritrix (crawling Portuguese)
and a good result compared to a hypothetical yield rate of
1.28 % discussed in section 2.

S. FUTURE WORK

We plan building more huge corpora covering all major lan-
guages (French and English being next on the list). Since

there are many online resources in these languages, we ex-
pect to gather two at least 20 billion tokens corpora in less
than a month.

We also need to invest more effort into optimizing the pro-
gram design to gain more data from scarce resources.

We would like to interconnect the crawler with other linguis-
tic and data processing tools to form a single system offering
instant web corpora on demand.

Other plans for the future include analyzing the topics and
genres of the downloaded texts and eventually balancing the
downloaded content in this respect.

6. CONCLUSION

We presented a way of selective crawling to make obtaining
internet content for text corpora more efficient. We have
implemented the idea in a new web crawler, which can ef-
fectively avoid data not suitable for text corpora thus sig-
nificantly improving the yield rate of the downloaded docu-
ments.

The crawler has already been successfully applied for build-
ing billions of words scale corpora in six languages. Texts in
the Russian corpus, consisting of 20.2 billions tokens, were
downloaded in just 13 days.

Acknowledgements

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 248307
(PRESEMT project).

7. REFERENCES

[1] M. Baroni, S. Bernardini, A. Ferraresi, and
E. Zanchetta. The wacky wide web: A collection of
very large linguistically processed web-crawled corpora.
Language Resources and Evaluation, 43(3):209-226,
2009.

[2] M. Baroni and A. Kilgarriff. Large
linguistically-processed web corpora for multiple
languages. Proceedings of FEuropean ACL, 2006.

[3] A. Ferraresi, E. Zanchetta, M. Baroni, and
S. Bernardini. Introducing and evaluating ukWaC, a
very large web-derived corpus of English. In
Proceedings of the 4th Web as Corpus Workshop
(LREC 2008), 2008.

[4] A. Kilgarriff, S. Reddy, J. Pomikélek, and A. PVS. A
corpus factory for many languages. Proc. LREC, Malta,
2010.

[5] J. Pomikdlek. Removing Boilerplate and Duplicate
Content from Web Corpora. PhD thesis, Masaryk
University, Brno, 2011.

[6] J. Pomikdlek, P. Rychly, and A. Kilgarriff. Scaling to
billion-plus word corpora. Advances in Computational
Linguistics, 41:3-13, 2009.

