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Abstract.
This paper is concerned with searching large text corpora – electronic col-
lections of texts. Often these are subject to queries specified by means of
regular expressions. Such queries go beyond a simple keyword search
that can be quickly evaluated using an inverted index, usually they are
rather processed by third-party regular expression libraries and take sig-
nificantly more time to evaluate. In this paper we present an index-based
approach for optimization of regular expression evaluation that we call
n-gram prefetching. It is based on the assumption that most regular expres-
sion queries on text corpora contain at least some fixed string portions
representing clues that can be used for developing heuristics that would
prune the number of potentially matching strings. The presented work
has been designed and implemented within the Manatee corpus man-
agement system. We show that the proposed approach can significantly
speed up regular expression processing by providing evaluation on a test
set of queries executed on a number of billion-word text corpora.
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1 Introduction

Text corpora represent primary data resource for testing hypotheses, providing
evidence and building large scale statistical models used in various natural
language processing applications such as part-of-speech tagging, parsing or
machine translation.

Special database management systems (in this case corpus management
systems) devised for indexing and querying large text corpora have been de-
veloped to satisfy user needs in terms of complexity of queries and related re-
sponse time, such as [1,2]. These corpus management systems usually leverage
the idea of inverted index (inverted text) [3] to provide fast access to all occur-
rences of a given word (or another attribute like lemma or tag depending on
the type of annotation) in the corpus.
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In many cases users formulate the queries not in the form of fixed string
expressions but as regular expressions. Clearly this represents a serious chal-
lenge for the corpus management systems as the first step necessary to answer
such queries lies in evaluating the regular expression against the relevant lex-
icon used in the corpus so as to be able to retrieve matching strings from the
indices. Usually, a third-party regular expression library is used for the actual
matching, often providing expressive power going way beyond what regular
expression offer as a classical computational model.

In this paper we present an optimization of regular expression evaluation
that we call n-gram prefetching. The approach has been implemented within
the Manatee corpus management system [4] and exploits the PCRE regular
expression library [5], however we claim that it is suitable for any inverted-
index-based corpus management system and it is in no way dependent on any
particular regular expression library.

The structure of this papers is as follows: we first provide a brief overview
of the Manatee corpus management system and its overall indexing machinery,
then we present the optimization approach in detail and finally we provide
and evaluation on a number of billion word corpora showing a up to 100-times
speedup.

2 Manatee

Manatee is a state-of-the-art corpus management system providing facilities
for efficient indexing (compiling) and searching billion-word-sized corpora
[6]. Querying corpora indexed by Manatee is done using the Corpus Query
Language (CQL, [7]). From a formal perspective a corpus in manatee consists
of text data (called tokens or positions, each of which may be associated with
a number of attributes such as word, tag or lemma, further referred to as
positional attributes) and text metadata (called structures, each of which is
denoting a span in the corpus such as a document, paragraph or sentence, and
may be associated with arbitrary number of structure attributes, denoting e.g.
the author of a document, date of creation etc.).

Every positional or structural attribute possesses following basic index
structures:

– attribute lexicon providing efficient string↔ID mapping. Each unique
attribute string value is assigned a unique numeric ID which is further used
in all indices and for processing CQL queries,

– attribute inverted (reversed) index providing sequential access to a sorted
list of occurrences (corpus positions) of a given attribute ID,

– attribute text storing the actual text of this corpus attribute, i.e. a sequence
of attribute IDs in the order of occurrence in the corpus.

On a very abstract level evaluating a CQL query consists of mapping
attribute strings given in the query to their IDs (using the lexicon index),
retrieving the relevant positions from the inverted index, combining them
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according to the given CQL operators and displaying the results (e.g. in the
form of a concordance). In the simplest case, considering a query looking for
all occurrences of a single word in corpus like [word="someword"], one yields
the ID n of someword from the lexicon and then retrieves the sorted list of
positions for n from the inverted index. Further CQL operations always rely
on processing sorted streams (of corpus positions or attribute IDs).

In the case attribute constraints are given as regular expressions, the
straightforward string-to-number mapping using the lexicon is not possible.
First one needs to find out which attribute values are matching the given
regular expression (by scanning the whole lexicon), then map each of the values
to the respective ID and merge all the related position streams retrieved from
the inverted index. Since all the streams and results must be sorted by design,
before the matching has finished no results are available to the user. This
exhibits a serious issue for large (i.e. billion-word-sized corpora) corpora where
the lexicon size is often reaching tens of millions of values and hence the time
taken to evaluate the regular expressions across the whole lexicon represents
a significant slow down of query evaluation, and especially of retrieving first n
results.

Two basic optimization have already been in place to tackle this problem:

– any string optimization: a regular expression matching ^(\.\*)+$ was
omitted as it obviously must match the whole lexicon,

– prefix optimization: since the lexicon provides an index of attributes ID
sorted alphabetically by the corresponding string values (representing one
of the possible implementations of string↔ID mapping based on a simple
binary search, see [8] for comparison), all regular expressions containing
a fixed-string prefix like re.* or mis.*ing make it possible to shrink the set
of possible matching strings by selecting the range of IDs with the given
prefix (here re and mis, respectively).

3 n-gram prefetching

In this paper we describe a new optimization approach that we call n-gram
prefetching. It is based on the assumption that most user queries exploiting
regular expressions still contain some fixed-string portions (because they are
linguistically motivated). While queries like ^.{0,3}$ are of course possible,
they are very rare. To verify this hypothesis we have inspected a set of 128,406
queries which the users of Sketch Engine (a web service exploiting Manatee,
see [9]) have issued to that system over the period from June to September
2014. Only 12 of them did not contain any fixed-string portions, moreover 6 of
these 12 were ^.*$ and got optimized as well.

The idea of n-gram prefetching consists (on compile time) in indexing all
character uni-, bi- and trigrams of every string attribute value and (on run
time) in extracting such n-grams from the regular expressions and using them
to constrain the number of possibly matching strings from whole lexicon to
a much smaller set of IDs.
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3.1 n-gram indexing

For indexing of the character n-grams we leverage the idea of dynamic attributes
in Manatee. A positional or structural attribute in Manatee can be a so called
dynamic attribute in which case such an attribute is automatically derived from
another existing (regular or dynamic) attribute. Each dynamic attribute is
assigned a dynamic function which takes the source attribute string as input
(and optionally other parameters as well) and returns the new (dynamic)
attribute value. Manatee contains a predefined set of dynamic functions which
mostly focus on simple string manipulations 1 (such as getting a prefix or suffix
of a string or its lowercase variant) and users can supply their own dynamic
functions as well (in the form of Linux plugins – dynamically linked C/C++
libraries). The main benefits of a dynamic attribute are:

– space savings in source data: no need to make it part of the input vertical
text

– space savings in indexing: a dynamic attribute has only the lexicon and
inverted index, but no text index. The inverted index stores for each
dynamic attribute ID a sorted list of source attribute IDs which map to this
dynamic attribute ID (instead of storing corpus positions).

– very limited runtime overhead: depending on the type of operations, the
overhead (slowdown) of using a dynamic attribute instead of a regular one
is very small. Optionally an index providing mappings of source attribute
ID to dynamic attribute ID is compiled as well, in which case the dynamic
functions do not need to be executed at runtime at all (except where it is
necessary to convert input user query, e.g. in case of lowercasing).

Each lexicon item (string) is processed generating all occurring uni-, bi- and
trigrams as shown in Figure 1 and storing the n-gram values as a dynamic
attribute of the source attribute.

classical -> c|l|a|s|s|i|c|a|l
cl|la|as|ss|si|ic|ca|al
cla|las|ass|ssi|sic|ica|cal

Fig. 1: Uni-, bi- and trigram string generation.

The resulting dynamic attribute contains a lexicon with all the n-grams
found in the source attribute and provides fast access to all source attribute
IDs containing a given n-gram. We prepend the caret sign (^) and append the
dollar sign ($) to each string so that we generate specific n-grams occurring at
beginnings and ends of words.

1 See https://www.sketchengine.co.uk/documentation/wiki/SkE/Config/
DynamicAttributes.

https://www.sketchengine.co.uk/documentation/wiki/SkE/Config/DynamicAttributes
https://www.sketchengine.co.uk/documentation/wiki/SkE/Config/DynamicAttributes
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Table 1: Comparison of original and n-gram lexicon sizes
corpus language size

×109
attribute lexicon size n-gram

lexicon size

czTenTen12 Czech 5.126
word 18,978,703 522,745

lemma 14,151,454 506,580
tag 12,061 1,702

enTenTen12

English

12.968
word 27,894,538 1,880,911

lemma 26,426,200 1,880,808
tag 60 260

enClueWeb09 82.581
word 115,820,931 2,350,697

lemma 110,606,268 2,296,072
tag 60 260

jpTenTen11 Japanese 10.322
word 13,844,200 6,353,186

lemma 13,303,479 3,766,160
tag 53 297

3.2 n-gram matching

On runtime we parse the given regular expression and extract all occurring
fixed-string uni-, bi- and trigrams (preferring longer n-gram where available
and combining strings longer than 3 characters into a set of trigrams by the
logical AND operator in CQL). Since regular expression as such can be quite
complicated we exploit the ANTLR3 parser generator [10] for processing the
regular expressions. We have chosen ANTLR3 because it has already been used
within Manatee (for CQL and corpus configuration files parsing) and it has very
powerful grammar writing formalism. The ANTLR3 lexer and parser grammar
is provided in Annex 1. The output of the ANTLR3 lexing and parsing is an
abstract syntax tree (AST) that is further subject to parsing by ANTLR3 using
a so called tree walker which directly executes programming code according to
the parsed AST.

The regular expression parsing grammar is based on the following princi-
ples:

– it recognizes separately regular characters and metacharacters (except for
^ and $ which are intentionally indexed as part of the n-grams as explained
above), because metacharacters must not be included into the n-grams
search and hence represent a separator between n-grams,

– it recognizes character classes (enclosed in [ and ] brackets) which must be
kept as a single token as they represent a single character position,

– it recognizes escaped sequences so that they can be handled correctly
(possibly de-escaped),

– it recognizes repetitions which must be either entirely omitted (in case zero
number of repetitions is allowed and hence the respective string portion
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is entirely optional) or if at least one occurrence is obligatory, the operand
character is duplicated and forms a suffix of previous n-grams and prefix
of next n-gram. E.g. abc+de gets expanded into two n-grams abc and cde
since every matching string must contain these.

Fig. 2: Sample abstract syntax tree for the input query .abc.*de+f. Both . and
.* substrings become a separator, while e+ substring is recognized so as to
search for de and ef.

Two sample AST’s are provided in Figures 2 and 3. The tree walking parser
looks up the found n-grams (in this sample abc, de and ef and combines the
related source attribute IDs using the logical AND operator into a single stream
of IDs that represent possibly matchings strings. Only these IDs are then subject
to evaluation of the regular expression instead of the full lexicon. An overview
of the whole dataflow is presented in Figure 4.

Fig. 3: Sample abstract syntax tree for the input query (alpha(b|c).*|d*ef+g)
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The lexicon lookup for particular n-grams is either a direct mapping of
an n-gram to ID using the dynamic attribute’s lexicon, or in case of n-grams
containing regular expression character class again an evaluation of a regular
expression – however on a much smaller lexicon. In Table 1 we provide
a comparison of original and n-gram lexicon sizes of various corpus and
attribute combinations showing that the n-gram lexicon is usually by orders
of magnitude smaller. It is obvious that for attributes with very small lexicons
(such as tags based on atomic tagsets), the optimization is not worth doing and
may even slow down the processing (as in the case of English and Japanese
tags), therefore in the current implementation the n-gram indices are being
compiled only for attributes with lexicons exceeding 10,000 items.

Fig. 4: Overview of the evaluation workflow using the n-gram prefetching
optimization for input query (alpha(b|c).*|d*ef+g)
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4 Evaluation

The optimization has been evaluated on a number of regular expressions
executed against various corpora under the following conditions:

– a single evaluation thread running on an Intel(R) Xeon(R) CPU E5506
@2.13GHz,

– hot cache – the best time of three consecutive runs was counted,
– we have measured the time to retrieve first 20 hits – this includes the regular

expression evaluation plus a number of other operations on the resulting
positions stream but it is more representative from the user perspective (the
processing within Sketch Engine is asynchronous and as soon as first 20 hits
are available they are displayed to users),

– we provide the number of regular expression evaluations (calls to the PCRE
matching function) with and without the optimization.

It follows from the evaluation that the speedup ranges from rather negligible
1.12 to enormous 100-times and the speedup ratio depends on a number of
circumstances:

– obviously the larger the lexicon size of the source attribute, the more
speedup can be achieved, and the evaluation shows that the additional
indexing pays off only in cases where the lexicon size exceeds about 10,000
items

– for very small lexicons (e.g. in the case of the tag attribute in English corpora
following the Penn Treebank tagset with only 60 atomic tags), the n-gram
prefetching is not very beneficial as it enlarges the lexicon size,

– the n-gram prefetching is beneficial even in cases where the prefix opti-
mization has already been previously in operation which is important since
these two optimizations cannot be combined,2

– not surprisingly the n-gram prefetching is most beneficial for regular
expressions containing rare n-grams (e.g. strč in Czech) but even for
frequent n-grams (like ten in English) the speedup is usually around 20,

– even where the optimization itself involves regular expression evaluation
(character class matching as in [sz]p.*), the speedup is significant and
present even in comparison with prefix optimization (as in pr[oe].*).

5 Technical Notes

For creating the n-gram optimization index, there is a new tool included in
Manatee called mkregexattr with a straightforward usage:

mkregexattr <CORPUS> <ATTRIBUTE>

2 The prefix optimization results – by its nature – in a list of IDs sorted alphabetically,
not numerically, and hence cannot be as such subject to any AND/OR stream
operations.
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Table 2: Evaluation of n-gram prefetching optimization. #RE denotes the
number of regular expression matching function executions without and with
n-gram prefetching, time is the evaluation time to acquire first 20 hits in
seconds, S denotes the achieved speedup.

corpus query #RE w/o #RE w/ time
w/o

time
w/

S

czTenTen12

[word=".*ější"] 18,978,703 41,426 10.030 0.341 29.4
[lemma=".*strč.*"] 14,151,454 888 6.601 0.066 100.0
[tag="k1.*c4.*"] 1,357 251 0.058 0.049 1.2
[word="[sz]p.*"] 18,978,703 115,347 10.023 0.698 14.4

enTenTen12

[word=".*ing"] 27,894,538 913,004 21.931 2.768 7.9
[lemma=".*ten.*"] 26,426,200 195,758 22.163 1.218 18.2
[word="pre.*ed"] 80,054 7,553 0.294 0.178 1.7
[word="pr[oe].*"] 251,924 198,297 1.329 0.920 1.4
[word=".*[dt]"] 27,894,538 3,466,379 41.100 8.538 4.8

[tag="N.*"] 60 5 0.056 0.048 1.2

jpTenTen11

[word=".*ち.*"] 13,844,200 30,160 8.182 0.364 22.4
[lemma=".*ア.*ス"] 13,303,479 69,228 8.388 0.450 18.6
[word="ンテ.*"] 17,078 17,077 0.199 0.178 1.12

The tool is part of Manatee version 2.111 and since this version, it is called
automatically by encodevert at the end of corpus compilation for each attribute
whose lexicon size exceeds 10,000 items.

6 Conclusions and Future Work

In this paper we have presented n-gram prefetching – an optimization ap-
proach for regular expression evaluation suitable for any corpus management
system based on inverted indices and independent of any third-party regu-
lar expression library. We have shown that this optimization can significantly
speedup user queries consisting of regular expressions. The idea has been
practically implemented within the Manatee corpus management system used
within the Sketch Engine corpus system and is part of the GPL-licensed part of
Manatee available also within the open source NoSketch Engine suite3.

In the future there might be a number of further optimizations that could
be explored, starting with extending the character class recognition support to
escape sequences like \w, \d etc., or dividing the n-gram lexicon into separate
ones for uni-, bi-, and trigrams. A different kind of optimization may also lie in
trying different regular expression library than PCRE or enabling PCRE just-in-
time (JIT) features that are currently not in use – however such a contribution

3 http://nlp.fi.muni.cz/trac/noske

http://nlp.fi.muni.cz/trac/noske
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is hard to evaluate as it very much depends on particular types of regular
expressions and with regard to them the speedup might be fairly unstable.
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Annex 1: ANTLR3 lexer and parser grammar for regular
expressions

LPAREN: ’(’;
RPAREN: ’)’;
LBRACKET: ’[’;
RBRACKET: ’]’;
LBRACE: ’{’;
RBRACE: ’}’;
BINOR: ’|’;
STAR: ’*’;
PLUS: ’+’;
QUEST: ’?’;
DOT: ’.’;
ZEROANDMORE: ’{0,}’ | ’{0,’ (’0’..’9’)+ ’}’;
ONEANDMORE: ’{1,}’ | ’{1,’ (’0’..’9’)+ ’}’;
ESC: ’\\’ (STAR | PLUS | QUEST | LBRACE | RBRACE | LBRACKET | RBRACKET

| LPAREN | RPAREN | DOT | BINOR | ’\\’ | ’^’ | ’$’
);

BACKREF: ’\\’ (’0’..’9’)+;
SPECIAL: ’\\’ .;
NOMETA: ~(STAR | PLUS | QUEST | LBRACE | RBRACE | LBRACKET | RBRACKET

| LPAREN | RPAREN | DOT | BINOR | ’\uFFFF’
);

ENUM: LBRACKET CHARCLASS+ RBRACKET;
fragment CHARCLASS: ( (NOMETA|DOT) ’-’ (NOMETA|DOT)

| ALNUM | ALPHA | BLANK | CNTRL | DIGIT | GRAPH | LOWER
| PRINT | PUNCT | SPACE | UPPER | XDIGIT
| (NOMETA|DOT)
);

regex
: regalt (BINOR^ regalt)* EOF!
;

regalt
: regpart+ -> ^(AND regpart+)
;

regpart
: regterm

( repet_one -> ^(ONE regterm)
| repet_zero -> SEPARATOR
| -> regterm
)

;

regterm
:
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(
LPAREN regalt (

(BINOR regalt)+ -> ^(BINOR regalt regalt)
| -> regalt

) RPAREN
| ENUM -> ENUM
| re_str -> re_str
)
;

re_str
: (DOT|BACKREF|SPECIAL) -> SEPARATOR
| NOMETA -> NOMETA
| ESC -> ESC
;

repet_one
: PLUS -> PLUS
| ONEANDMORE -> ONEANDMORE
;

repet_zero
: QUEST -> QUEST
| STAR -> STAR
| ZEROANDMORE -> ZEROANDMORE
;


