
RASLAN 2012
Recent Advances in Slavonic
Natural Language Processing

A. Horák, P. Rychlý (Eds.)

RASLAN 2012

Recent Advances in Slavonic Natural
Language Processing

Sixth Workshop on Recent Advances
in Slavonic Natural Language Processing,
RASLAN 2012
Karlova Studánka, Czech Republic,
December 7–9, 2012
Proceedings

Tribun EU
2012

Proceedings Editors

Aleš Horák
Faculty of Informatics, Masaryk University
Department of Information Technologies
Botanická 68a
CZ-602 00 Brno, Czech Republic
Email: hales@fi.muni.cz

Pavel Rychlý
Faculty of Informatics, Masaryk University
Department of Information Technologies
Botanická 68a
CZ-602 00 Brno, Czech Republic
Email: pary@fi.muni.cz

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the Czech Copyright Law, in its current version, and permission for use
must always be obtained from Tribun EU. Violations are liable for prosecution under the Czech Copyright Law.

Editors c○ Aleš Horák, 2012; Pavel Rychlý, 2012
Typography c○ Adam Rambousek, 2012
Cover c○ Petr Sojka, 2010
This edition c○ Tribun EU, Brno, 2012

ISBN 978-80-263-0313-8

mailto:hales@fi.muni.cz
mailto:pary@fi.muni.cz
http://raslan2012.nlp-consulting.net/

Preface

This volume contains the Proceedings of the Sixth Workshop on Recent Ad-
vances in Slavonic Natural Language Processing (RASLAN 2012) held on De-
cember 7th–9th 2012 in Karlova Studánka, Sporthotel Kurzovní, Jeseníky, Czech
Republic.

The RASLAN Workshop is an event dedicated to the exchange of informa-
tion between research teams working on the projects of computer processing of
Slavonic languages and related areas going on in the NLP Centre at the Faculty
of Informatics, Masaryk University, Brno. RASLAN is focused on theoretical
as well as technical aspects of the project work, on presentations of verified
methods together with descriptions of development trends. The workshop also
serves as a place for discussions about new ideas. The intention is to have it as
a forum for presentation and discussion of the latest developments in the field
of language engineering, especially for undergraduates and postgraduates af-
filiated to the NLP Centre at FI MU. We also have to mention the cooperation
with the Dept. of Computer Science FEI, VŠB Technical University Ostrava.

Topics of the Workshop cover a wide range of subfields from the area
of artificial intelligence and natural language processing including (but not
limited to):

* text corpora and tagging
* syntactic parsing
* sense disambiguation
* machine translation, computer lexicography
* semantic networks and ontologies
* semantic web
* knowledge representation
* logical analysis of natural language
* applied systems and software for NLP

RASLAN 2012 offers a rich program of presentations, short talks, technical
papers and mainly discussions. A total of 16 papers were accepted, contributed
altogether by 24 authors. Our thanks go to the Program Committee members
and we would also like to express our appreciation to all the members of the
Organizing Committee for their tireless efforts in organizing the Workshop and
ensuring its smooth running. In particular, we would like to mention the work
of Aleš Horák, Pavel Rychlý and Lucia Kocincová. The TEXpertise of Adam
Rambousek (based on LATEX macros prepared by Petr Sojka) resulted in the
extremely speedy and efficient production of the volume which you are now
holding in your hands. Last but not least, the cooperation of Tribun EU as both
publisher and printer of these proceedings is gratefully acknowledged.

Brno, December 2012 Karel Pala

Table of Contents

I Syntax, Morphology and Lexicon

Saara: Anaphora Resolution on Free Text in Czech . 3
Vašek Němčík

Behaviour of the Czech Suffix -ák – A Case Study . 9
Dana Hlaváčková, Karel Pala

Reproducing Czech Syntactic Parsing Results Published in CoNLL Tasks . 15
Lucia Kocincová

Adaptation of Czech Parsers for Slovak . 23
Marek Medved’, Miloš Jakubíček, Vojtěch Kovář, Václav Němčík

II Logic and Language

Deduction System for TIL-2010 . 33
Marie Duží, Marek Menšík, Lukáš Vích

Czech Knowledge-Based System with Temporal Reasoning 43
Andrej Gardoň

Linguistic Logical Analysis of Direct Speech . 51
Aleš Horák, Miloš Jakubíček, Vojtěch Kovář

Building Evaluation Dataset for Textual Entailment in Czech 61
Zuzana Nevěřilová

III Text Corpora and Tools

Detecting Spam Content in Web Corpora . 69
Vít Baisa, Vít Suchomel

Recent Czech Web Corpora . 77
Vít Suchomel

CzAccent – Simple Tool for Restoring Accents in Czech Texts 85
Pavel Rychlý

Towards 100M Morphologically Annotated Corpus of Tajik 91
Gulshan Dovudov, Vít Suchomel, Pavel Šmerk

VIII Table of Contents

IV Language Modelling

Building A Thesaurus Using LDA-Frames . 97
Jiří Materna

Improving Automatic Ontology Developement . 105
Marek Grác, Adam Rambousek

Authorship Verification based on Syntax Features . 111
Jan Rygl, Kristýna Zemková, Vojtěch Kovář

Segmentation from 97% to 100%: Is It Time for Some Linguistics? 121
Petr Sojka

Author Index . 133

Part I

Syntax, Morphology and
Lexicon

Saara: Anaphora Resolution on Free Text in Czech

Vašek Němčík

NLP Centre
Faculty of Informatics, Masaryk University

Brno, Czech Republic
xnemcik@fi.muni.cz

Abstract. Anaphora resolution is one of the key parts of modern NLP
systems, and not addressing it usually means a notable performance drop.
Despite the abundance of theoretical studies published in the previous
decades, real systems for resolving anaphora are rather rare. In this article
we present, to our knowledge, the first practical anaphora resolution
system applicable to Czech free text. We describe the individual stages
of the processing pipeline and sketch the data format used as an interface
between individual modules.

Key words: anaphora resolution, Saara, Czech

1 Introduction

In this work, we present a natural language processing (NLP) application set-
ting capable of anaphora resolution (AR) based on plain free text in Czech. This
is accomplished by combining several NLP tools, described below, developed
at the NLP Centre at the Masaryk University in Brno.

When analyzing texts, anaphoric expressions, especially pronouns, require
special handling. On their own, they do not contain any semantic information,
and therefore traditional morphological tagging or syntactic analysis as such
do not make it possible to arrive at their full meaning. To obtain a complete
representation of sentences containing pronouns, these need to be considered
in context, namely, interpreted by an AR procedure. Failing to incorporate
such a procedure into an NLP system means accepting only a partial text
representation, and often a subsequent performance drop.

To our knowledge, there is only a limited number of stand-alone AR systems
that work with plain text input, and we are not aware of any such system
available for Czech.

In the next section, we mention similar anaphora resolution systems pro-
posed so far. Section 3 describes the processing pipeline of Saara, and further,
Section 4 presents performance figures. Finally, we sketch directions of our fur-
ther research.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 3–9, 2012. c○ Tribun EU 2012

http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

4 Vašek Němčík

2 Related Work

This section sums up existing systems relevant from our perspective, starting
with complex AR systems for English, followed by proposals made for Czech.

A number of software tools for performing AR have been presented in
the recent years. One of the prominent ones is MARS (Mitkov, Evans, and
Orăsan, 2002), a system created at the Univeristy of Wolverhampton. The core
of the underlying AR algorithm is a weighting scheme based on the so-called
antecedent indicators. There are versions of MARS for various languages, such
as English, French, Arabic, Polish, or Bulgarian.

A further notable AR system is BART (Versley et al., 2008), a product of
inter-institute cooperation encouraged by the Johns Hopkins Summer Work-
shop in 2007. BART is a framework allowing straightforward experimenting
with various machine learning models. It operates over XML data and allows
easy visualisation of results in the MMAX tool (Müller and Strube, 2006).

For Czech, mainly theoretical work has been published. First theoretical
models have emerged from the long tradition of research on the Functional
Generative Description (FGD) of language. Several algorithms were proposed,
for instance by Hajičová (1987), Hajičová, Hoskovec, and Sgall (1995), and
Hajičová, Kuboň, and Kuboň (1990), providing only tentative evaluation, due
to the lack of sufficiently large annotated data at that time.

The emergence of the Prague Dependency Treebank (PDT) (Hajič et al.,
2005), a richly annotated Czech treebank containing annotation of pronomi-
nal anaphora, made it possible to experiment with AR systems and to evaluate
them. Apart from our work, a notable AR system for Czech is AČA presented
by Linh (2006). It comprises rule-based algorithms and also machine learning
models for resolving individual pronoun types. Further, a noun phrase coref-
erence resolution system based on maximum entropy and perceptron models
was proposed by Novák and Žabokrtský (2011). These systems are respectable
results in the field of Czech computational linguistics, however, are fitted to the
dependency-based formalism of PDT and their applicability to data in other
formalisms may be limited.

The next section gives more details about Saara, a stand-alone AR system
for Czech.

3 Saara Pipeline

Saara is is a modular AR system, currently containing re-implementations and
variants of selected salience-based algorithms. The architecture of the system
was inspired by the principles suggested by Byron and Tetreault (1999), the key
points being modularity and encapsulation. They suggest segmenting system
modules into three layers: Themselves, they propose three layers:

– the translation layer for creating data structures,
– the AR layer containing functions addressing AR itself,
– the supervisor layer for controlling the previous layers.

Saara: AR on Free Text 5

<s id="sent1" class_id="cls1" type="sentence">
<markable id="m1" class_id="cls2" type="clause">
<markable id="m2" class_id="cls3" type="np" gram="subj">
Filip Filip k1gMnSc1
</markable>
políbil políbit k5eAaPmAgInSrD,k5eAaPmAgMnSrD
<markable id="m3" class_id="cls4" refconstr="m2" type="np" gram="obj">
Lucii Lucie k1gFnSc4
</markable>
</markable>
<g/>
. . kIx.
</s>
<s id="sent2" class_id="cls5" type="sentence">
<markable id="m4" class_id="cls6" type="clause">
<markable id="ms1" anaref="m2" class_id="cls3" type="pron_pers_zero" gram="subj">
_ on k3p3gMnSc1,k3p3gInSc1,k3p3gFnSc1,k3p3gNnSc1
</markable>
Miluje milovat k5eAaImIp3nS
<markable id="m5" anaref="m3" class_id="cls4" refconstr="ms1" type="pron_pers_weak" gram="obj">
ji on k3p3gFnSc4xP
</markable>
</markable>
<g/>
. . kIx.
</s>

Fig. 1. An example of a structured vertical file

We adopt an anologous scheme of layers: the technical layer of scripts con-
verting data from various formalisms into a general linear format containing
structural tags, so-called markables and their attributes; the markable layer ab-
stracting from formalism specifics, operating solely over the already known
markables and their attributes, and focusing on the AR process as such; and
finally the supervisor layer defining the application context, such as individual
pre-processing steps and AR algorithm settings.

The interface between all modules is the so-called structured vertical file,
a plain text format containing one line per token, with extra tags express-
ing higher-level units, such as sentences, clauses and referential expressions.
A slightly abridged example of such a file is given in Figure 1.

The first phase of the processing is converting the input data into the vertical
format and performing morphological analysis. For plain text input, this is
performed by desamb (Šmerk, 2007), a Czech tagger assigning morphological
tags to each token and disambiguating these tags based on a statistical model
and a set of heuristic rules. For words that can not be disambiguated based on
shallow linguistic information, such as pronouns, multiple morphological tags
are restored by the Majka morphological analyzer (Šmerk, 2009). At the end of
this phase, each token line contains a morphological tag and lemma.

Next, syntactic analysis is performed using either the SET (Kovář, Horák,
and Jakubíček, 2011) or Synt parser (Jakubíček, Horák, and Kovář, 2009). We
use the SET parser by default, as it is slightly more robust. It is based on a small
set of rules detecting important patterns in Czech text. In the Saara pipeline,

6 Vašek Němčík

Table 1. Performance of the system in MUC-6 and traditional measures

MUC-6 IR-style
Precision Recall Precision Recall

Plain Recency (baseline) 22.40 24.85 20.75 20.75
BFP Centering 42.36 44.85 38.98 37.47
Lappin and Leass’ RAP 36.54 40.41 35.49 35.39

we use SET to extract phrases, which are subsequently incorporated into the
vertical file as tags grouping tokens in question.

As the next step, necessary syntactic post-processing is carried out. This
comprises assignment of coarse-grained grammatical roles, and based on that,
detection of zero subjects, which are afterwards re-constructed as dummy
tokens and makrables, including their morphological features.

The core phase of the computation is anaphora resolution as such. Modules
implementing viriations of diverse AR algorithms, such as the BFP algorithm
(Brennan, Friedman, and Pollard, 1987) or RAP (Lappin and Leass, 1994),
are available. AR modules supplement markable tags representing individual
discourse objects with information about their antecedents and coreference
classes.

A web version of this application setting, accepting Czech free text, and with
Saara configured to resolve personal pronouns, is freely available online at
http://nlp.fi.muni.cz/projekty/anaphora_resolution/saara/demo/.
We hope the availability of this demo will encourage experimenting with Saara
and its extrinsic comparison with other systems.

4 Evaluation

Evaluation of AR systems (and complex NLP systems in general) is a rather
complicated issue and gives rise to frequent misconceptions.

A number of sophisticated metrics have been proposed to assess the
performance of AR systems with precise numbers, however, these numbers are
often substantially biased by a broad range of factors not pointed out in the
evaluation report. The figures largely depend on

– whether the evaluation is performed on manually corrected data or data
susceptible to processing errors,

– whether errors propagated from the pre-processing (ie. tagging, markable
detection) are counted,

– whether all errors are counted equally,
– the precise types of anaphora addressed,
– the size and genre of the text etc.

Saara: AR on Free Text 7

To evaluate Saara, we use the PDT data projected into structured verticals by
the pdt2vert tool (Němčík, 2011), considering only personal pronouns, namely
strong and weak personal pronouns, and zero subjects of finite verb groups
(the total of 8648 anaphors). We are aware of the fact that the data may contain
errors, for instance, due to imperfect detection of clause boundaries, however,
we adopt the given structures as correct. Anaphors resolved to a different
member of the same coreference chain are considered to be resolved correctly,
and all errors have the same weight.

To compare the individual algorithm prototypes, their performance is
revealed in Table 1. These results need to be considered as tentative, and are
expected to improve with further parameter tuning and the contribution of
anaphoric links of further types.

5 Future Work

We have described Saara as a part of a stand-alone NLP system accepting
plain text as input, and performing syntax analysis supplemented by an
interpretation of personal pronouns.

In our future work, we mainly aim at enhancing the AR methods by
accounting for further information relevant to the antecedent choice. The long-
term goal is to incorporate as much semantic information as possible with
respect to its availability and the reliability of the lower-level analysis. As a
first step, a decent approximation can be obtained by considering word co-
occurrence statistics.

Further, we plan on to account for further types of anaphoric expressions,
for example, certain uses of demonstrative pronouns. Demonstrative pronouns
are rather complex to resolve, as they allow reference to abstract entities and
discourse segments of arbitrary size.

Acknowledgments

This work has been partly supported by the Ministry of Education of the
Czech Republic project No. LM2010013 (Lindat–Clarin – Centre for Language
Research Infrastructure in the Czech Republic).

References

1. Brennan, Susan E., Marilyn W. Friedman, and Carl J. Pollard. 1987. A centering
approach to pronouns. In Proceedings of the 25th Annual Meeting of the ACL, pages
155–162, Standford.

2. Byron, Donna K. and Joel R. Tetreault. 1999. A flexible architecture for reference
resolution. In Proceedings of the Ninth Conference of the European Chapter of the
Association for Computational Linguistics (EACL-99).

8 Vašek Němčík

3. Hajič, Jan et al. 2005. The prague dependency treebank 2.0,
http://ufal.mff.cuni.cz/pdt2.0/. Developed at the Institute of Formal
and Applied Linguistics, Charles University in Prague. Released by Linguistic
Data Consortium in 2006.

4. Hajičová, Eva. 1987. Focusing – a meeting point of linguistics and artificial
intelligence. In P. Jorrand and V. Sgurev (eds.), Artificial Intelligence vol II: Methodo-
logy, Systems, Applications. Elsevier Science Publishers, Amsterdam, pp 311–321.

5. Hajičová, Eva, Tomáš Hoskovec, and Petr Sgall. 1995. Discourse modelling based
on hierarchy of salience. The Prague Bulletin of Mathematical Linguistics, (64):5–24.

6. Hajičová, Eva, Petr Kuboň, and Vladislav Kuboň. 1990. Hierarchy of salience
and discourse analysis and production. In Proceedings of Coling’90, Helsinki.

7. Jakubíček, Miloš, Aleš Horák, and Vojtěch Kovář. 2009. Mining phrases
from syntactic analysis. In Václav Matoušek and Pavel Mautner, editors, Text,
Speech and Dialogue: 12th International Conference, TSD 2009, Pilsen, Czech Republic,
September 13-17, 2009. Proceedings, volume 5729 of Lecture Notes in Computer
Science. Springer, Heidelberg, pages 124–130.

8. Kovář, Vojtěch, Aleš Horák, and Miloš Jakubíček. 2011. Syntactic analysis
using finite patterns: A new parsing system for czech. In Zygmunt Vetulani,
editor, Human Language Technology. Challenges for Computer Science and Linguistics,
volume 6562 of Lecture Notes in Computer Science. Springer, Heidelberg, pages
161–171.

9. Lappin, Shalom and Herbert J. Leass. 1994. An algorithm for pronominal
anaphora resolution. Computatinal Linguistics, 20(4):535–561.

10. Linh, Nguy Giang. 2006. Návrh souboru pravidel pro analýzu anafor v českém
jazyce. Master’s thesis, Charles University, Faculty of Mathematics and Physics,
Prague.

11. Mitkov, Ruslan, Richard Evans, and Constantin Orăsan. 2002. A new, fully
automatic version of Mitkov’s knowledge-poor pronoun resolution method. In
Proceedings of the Third International Conference on Intelligent Text Processing and
Computational Linguistics (CICLing-2002), pages 168–186, Mexico City, Mexico,
February, 17 – 23. Springer.

12. Müller, Christoph and Michael Strube. 2006. Multi-level annotation of linguistic
data with MMAX2. In Sabine Braun, Kurt Kohn, and Joybrato Mukherjee, editors,
Corpus Technology and Language Pedagogy: New Resources, New Tools, New Methods.
Peter Lang, Frankfurt a.M., Germany, pages 197–214.

13. Novák, Michal and Zdeněk Žabokrtský. 2011. Resolving noun phrase coreference
in czech. Lecture Notes in Computer Science, 7099:24–34.

14. Němčík, Vašek. 2011. Extracting Phrases from PDT 2.0. In Aleš Horák and
Pavel Rychlý, editors, Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2011, pages 51–57, Brno. Tribun EU.

15. Šmerk, Pavel. 2007. Towards morphological disambiguation of czech. Ph.D.
thesis proposal, Faculty of Informatics, Masaryk University.

16. Šmerk, Pavel. 2009. Fast morphological analysis of czech. In Proceedings of the
Raslan Workshop 2009, pages 13–16, Brno. Masarykova univerzita.

17. Versley, Yannick, Simone P. Ponzetto, Massimo Poesio, Vladimir Eidelman, Alan
Jern, Jason Smith, Xiaofeng Yang, and Alessandro Moschitti. 2008. BART: a mod-
ular toolkit for coreference resolution. In Nicoletta Calzolari, Khalid Choukri,
Bente Maegaard, Joseph Mariani, Jan Odjik, Stelios Piperidis, and Daniel Tapias,
editors, Proceedings of the Sixth International Conference on Language Resources and
Evaluation (LREC’08), pages 962–965, Marrakech, Morocco. European Language
Resources Association (ELRA).

Behaviour of the Czech Suffix -ák – A Case Study

Dana Hlaváčková, Karel Pala

NLP Centre
Faculty of Informatics, Masaryk University

Brno, Czech Republic
{hlavack,pala}@fi.muni.cz

Abstract. New techniques in Czech derivational morphology are dis-
cussed. They are based on the exploitation of the tool Deriv with inte-
grated access to the main Czech dictionaries and corpora (SYN2000c and
the new large Czech corpus CzTenTen12). The case study deals especially
with the Czech suffix -ák – we describe its behaviour as completely as pos-
sible. The paper brings some new results in comparison with standard
Czech grammars which do not rely on large data and software tools.

Key words: Czech morphology, Czech suffixes

1 Introduction

In the paper we report on an exploration of the derivational behaviour of the
selected noun Czech suffixes -ák, -ec, -ík,-ník. We have used the tool Deriv (see
http://deb.fi.muni.cz/deriv), which allows us to have a look at possibly all
Czech nouns with the selected suffixes – here we will pay attention especially
to the nouns with the suffix -ák that can be derived by the standard derivational
processes. As far as we can say the previous exploration of the mentioned
suffixes has been limited in number – because the authors of the standard Czech
grammars ([1,2], further MČ and PMČ) did not have large corpora and machine
dictionaries at their time, thus they were able to handle only a small number of
examples.This inevitably meant that their results had to be only partial. The
same can be said with regard to the Dokulil’s [3] important work in which
he laid the theoretical foundation of Czech word derivation but he did have
sufficient data at his disposal.

2 Motivation

Our main purpose is to investigate the derivational relations in a more detailed
and deeper way using larger and more complete Czech data. We are seeking to
reach better coverage of the studied phenomena together with better precision.
We start with the results that have been obtained for Czech formal morphology,
namely with the morphological dictionary that is a part of Czech morphological
analyzer Ajka [4]. Then we continue investigating derivational relations and

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 9–13, 2012. c○ Tribun EU 2012

http://deb.fi.muni.cz/deriv
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

10 Dana Hlaváčková, Karel Pala

behaviour of the selected suffixes in particular. As we use computer tools we
need to make our description as formal as possible. We are convinced that
better knowledge of derivational behaviour of the individual suffixes in Czech
(and prefixes as well) is a necessary prerequisite for the development of the
more inteligent searching tools that can be used in various applications, e.g. in
searching engines for Web.

3 Computer processing of Czech word derivation

Obtaining better knowledge about the derivational relations in Czech requires
larger data than was used so far in the mentioned standard Czech gram-
mars [1,2]. Such data cannot be, however, reasonably processed manually, that
would be too time consuming and would contain errors. At the moment we
have at our disposal a large machine dictionary of Czech stems (approx. 400
000 items) whose coverage of Czech is about 95 %. To explore the behaviour of
suffixes the tool Deriv has been developed, which makes it possible to formally
describe the morphematic segmentation on the derivational level. This is han-
dled with looking up the possible combinations of stems and suffixes (prefixes
as well) also using regular expressions. In this way we obtain the required lists
of nouns containing the particular suffixes as they occur in Czech. The tool De-
riv [5] is integrated with two Czech corpora (SYN2000c [6] and CzTenTen12) as
well as with the dictionary browser DEBDict, so the user (linguist) can see the
behaviour of an explored suffix as completely as possible, namely its frequen-
cies.

4 Starting data – morphological dictionary, corpora, ...

As we have said we work with the large machine dictionary of Czech stems
(approx. 400 000 items) whose coverage of Czech is about 95 % (for comparison,
the size of the SSJČ is twice smaller). It is a part of the Czech morphological
analyzer Ajka [4] and the Deriv tool works with the lists of Czech stems
generated appropriately for this purpose. The coverage 95 % means that the
analyzer Majka is able to process any Czech text and recognize the word
forms in it. Those 5 % are expressions consisting of numbers (dates, telephone
numbers, etc.), e-mail addresses, URL’s, words from other languages than
Czech (most frequently Slovak and English) and others. Since the tool Deriv
is linked with the two Czech corpora and six Czech dictionaries in Debdict
the obtained results can be compared with them, especially with regard to the
frequencies. The comparison of numbers obtained from the corpus SYN2000c
with 114,363,813 and corpus CzTenTen12 with 5,414,437,666 tokens (see http:

//ske.fi.muni.cz/auth/corpora/) is then quite expressive. Thanks to links
of the Deriv to the Word Sketch Engine also collocational data can be obtained.
The data also contain the respective lists of Czech suffixes and prefixes.

http://ske.fi.muni.cz/auth/corpora/
http://ske.fi.muni.cz/auth/corpora/

Behaviour of the Czech Suffix -ák – A Case Study 11

5 Case study – behaviour of the Czech suffix -ák

The obtained list contains the derived nouns with the suffixem -ák which can
be characterized in the following way:

– expressive and slang nouns, also obsolete ones
– nouns productive in deriving one word expressions

The number of the Czech nouns ending with the string -ák is 1351, from
them there are 724 lemmata in masculine animate and 627 lemmata in mascu-
line inanimate (they include also substandard lemmata not occurring in SSJČ
and proper (family) names.

6 Derivational categories and their classification

For the nouns in the lists we propose the classification comprising the following
categories with reference to the classifications that can be found in MČ and
PMČ.

– Nouns derived from nouns:
∙ agentive nouns - dudák (bagpiper), koňák (horseman), sedlák (farmer),

tramvaják (tram driver)
∙ nouns denoting inhabitants - Brňák (inhabitant of Brno), Hanák (inhabi-

tant of Haná), Malostraňák (dweller of the Prague quarter Malá Strana),
Pražák (inhabitant of Prague

∙ nouns expressing membership in a group of people - devětsilák (member
of the group Devětsil), esenbák (cop), tatrovák (worker in the Tatra
factory)

∙ nouns denoting animals (derived from feminines) - lišák (male fox),
myšák (male mouse), opičák (male monkey)

∙ augmentatives - hnusák (scumbag), sviňák (goat), úchylák (pervert)
– Nouns derived from adjectives:

∙ nouns denoting bearers of properties - blond’ák (blond man), dobrák
(brick), chudák (poor fellow), silák (strongman)

– Nouns derived from numerals
∙ nouns denoting order - prvák (first-year student), druhák (second-year

student
∙ nouns denoting roe deers and deers with regard to their antlers -

desaterák (ten pointer), dvanácterák (royal stag)
– Nouns derived from verbs

∙ agentive nouns - divák (viewer), honák (cowboy), pašerák (smuggler),
zpěvák (singer

∙ nouns denoting instruments - bodák (bayonet), drapák (grab), hasák
(pipe-wrench), naviják (reel)

It is necessary to remark that number of the nouns in Table 1 is smaller
than the numbers given above. This is due to the fact that we have put aside
the nouns for which the reasonable derivational relation between the basic and
derived form cannot be established or it is very difficult.

12 Dana Hlaváčková, Karel Pala

Table 1. The coverage of the nouns belonging to the individual categories

Category Masculine animate Masculine inanimate
agentive 98 -
inhabitants 78 -
groups 62 -
animals 16 -
augmentatives 47 -
bearers of property 128
order 5 -
antlers 7 -
agentive1 105 -
instruments -
Total 546

7 Results and Conclusions

In the paper we paid attention to some selected Czech noun suffixes for which
we describe their derivational behaviour. It has to be stressed that we have
concentrated on just one suffix, namely -ák, which serves as a pattern that can
be applied to other mentioned suffixes as well. The concrete results (numbers)
are, however, brought only for the -ák. On the other hand, it is obvious that this
kind of description can be applied to all mentioned suffix.

The main result is Table 1 which shows what meanings -ák have, the
basic analysis standing behind Table 1 has been performed manually. The
classification offered in Table 1 in fact removes ambiguity of -ák, which a human
user resolves easily but computer applications cannot work without it.

We would like to stress that more can be said about the behaviour of -ák and
suffixes of the same type – the paper is one of the first exercises in this respect.
It also has to be noted that the use of the tool Deriv and large data made it
possible to offer the results which display a reasonable coverage.

Acknowledgments

This work has been partly supported by the Ministry of Education of the
Czech Republic project No. LM2010013 (Lindat–Clarin – Centre for Language
Research Infrastructure in the Czech Republic), and by the Czech Science
Foundation under the project P401/10/0792.

References

1. Komárek, M.: Mluvnice češtiny I (Grammar of Czech I). Academia, Praha (1986)
2. Karlík, P., Grepl, M., Nekula, M., Rusínová, Z.: Příruční mluvnice češtiny. Lidové

noviny (1995)

Behaviour of the Czech Suffix -ák – A Case Study 13

3. Dokulil, M.: Tvoření slov v češtině I (Word Derivation in Czech I). Nakladatelství
ČSAV, Praha (1962)

4. Šmerk, P.: K počítačové morfologické analỳze češtiny. (2010)
5. Šmerk, P.: Deriv. (2009) Web application interface (in Czech), accessible at:

http://deb.fi.muni.cz/deriv.
6. ICNC: Czech National Corpus – SYN2000. Institute of the Czech National Corpus,

Praha (2000) Accessible at: http://www.korpus.cz.

Reproducing Czech Syntactic Parsing Results
Published in CoNLL Tasks

Lucia Kocincová

NLP Centre, Faculty of Informatics,
Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic

lucyia@mail.muni.cz

Abstract. In this paper, I describe the approach on reproducing MST
Parser and MaltParser results for Czech dependency parsing which were
published in several tasks of Conference on Computational Natural
Language Learning. Firstly, I briefly describe basic principles of parsers.
Then, I include features and options that need to be optimized while using
the parsers to get the desired results on testing files as well as evaluation
methodology used in my research. I also shortly mention hardware
requirements for those, who would like to train their own model for
Czech language parsing. Finally, I include the practical application of
trained models for our approach.

Key words: syntactic analysis, parsing, Czech, parser evaluation

1 Introduction

Dependency parsing universally is nowadays very evolving field in natural
language processing, as dependency parsed data are further used for higher
layer analysis of natural language. Also, development of tagged treebanks en-
abled to analyse languages another way – using data-driven parsing. That is
why every improvement is proudly presented and various workshops with
NLP tasks are founded. One of the best-known is Conference on Computa-
tional Natural Language Learning (CoNLL, now part of Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural
Language Learning, shortly EMNLP-CoNLL), where shared tasks are hold to
challenge the participants in natural language learning systems. Each team is
given the same training data, so then the evaluation results can be better com-
pared.

2 CoNNL shared task results for Czech language

Czech language dependency parsing was part of CoNLL shared task in 2006 [1],
2007 [2] and 2009 [3] and the aim of this paper is to describe the process of the
approach to get the results shown in Table 1, although it may not be possible to
achieve the exact accuracy, as it is covered later in the chapter.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 15–22, 2012. c○ Tribun EU 2012

mailto:lucyia@mail.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

16 Lucia Kocincová

Table 1. Results presented in CoNNL shared tasks.

best accuracy in year Labeled Accuracy Unlabeled Accuracy
2006 80.18 87.30
2007 80.19 86.28
2009 80.38 (not tested)

MaltParser (2006) 78.42 84.80
MST Parser (2006) 80.18 87.30

2.1 Reasons why results may not be reproduced exactly

At the beginning of the research, I was determined that I should simulate all
conditions that were depicted in conference papers but after further study of
various materials, my determination changed. There were decisive reasons that
cause the fact that my results may, or precisely, can not be the same as gained
in CoNNL tasks:

– different scoring metrics were used (e.g. punctuation was not counting)
– versions of parsers were not stated
– different training and/or evaluation data (e.g. old version of corpora) may

be used1

– different data format was used in 2009

In addition, I decided to use the latest versions of parsers because of the
fact, that trained models from old versions are no longer runnable under the
new ones. Therefore, old version models could be counterproductive if parsing
data for later applications, such identified in section 7.

3 MaltParser

MaltParser is a complex system for statistical dependency parsing developed
by Johan Hall, Jens Nilsson and Joakim Nivre at Växjö University and Uppsala
University in Sweden. Using MaltParser, an induced model can be generated
from corpus and then this model can be used to parse new data [4].

Latest version 1.7.2 was released on 25th September 2012 and is distributed
under open source licence2. The system is being developed in Java from version
1.0.0.

MaltParser’s specification can be divided into three parts3:

– Parsing algorithm: is defined by a transition system which derives depen-
dency trees, together with an oracle that is used for reconstruction of each
valid transition sequence for dependency structures. Together, there are
seven deterministic parsing algorithms:

1 due to licence conditions, they are not available online
2 full specification can be found at http://www.maltparser.org/license.html
3 complete list of features with their options can be found at http://www.maltparser.
org/userguide.html

http://www.maltparser.org/license.html
http://www.maltparser.org/userguide.html
http://www.maltparser.org/userguide.html

Reproducing Czech Syntactic Parsing Results Published in CoNLL Tasks 17

∙ Nivre’s algorithm: is a linear-time algorithm for projective dependency
structures that can be run in two modes, either arc-eager (nivreeager)
or arc-standard (nivrestandard).

∙ Stack algorithm: are a group of three different algorithms: for projective
(stackproj) and non-projective trees (stackeager, stacklazy)

∙ Covington’s algorithm: is a quadratic-time algorithm for unrestricted
dependency structures which modes can be restricted to projective
structures (covproj) or non-projective (covnonproj) structures.

The last two parsing algorithms available in parser are:
∙ Planar algorithm: is another linear-time algorithm but for planar de-

pendency structures (ones that do not contain any crossing links)
∙ 2-Planar algorithm: also linear-time algorithm but can parse 2-planar

dependency structures (ones whose links may be crossed following a
specific rule)

After varying parser algorithms, especially first ones mentioned above,
Lazy Stack algorithm carried out best accuracies with both types of learning
packages.

– Learning algorithm: parser includes two machine learning packages –
LIBSVM, a type of support vector machines with kernels, and LIBLINEAR,
a type of various linear classifiers learner.
I tried various experiments with both packages to search which one gives
best results in meaning of time, memory use and accuracy. As can be seen
in Table 3, LIBSVM attained best accuracy and learning time was nearly 73
hours.

– Feature model: is an external XML file that specifies features of partially
built dependency structure together with main data structures in the parser
configuration. Default model, which depends on combination of machine
learning package and parsing algorithm, can be also used.
I experimented with a few feature models, either build in or obtained
by MaltOptimizer4. The best performance in my experiment was accom-
plished by one made with MaltOptimizer.

For achieving state-of-the-art results, optimization of MaltParser is neces-
sary. It is a non-trivial task because not only machine learning algorithm needs
to be correctly configured but also various parsers adjustments require setup -
I used splitting functionality for speeding up training and parsing time in case
of LIBSVM (split column was CPOSTAG, split structure was Stack[0] and split
threshold 1000). In addition, each learning algorithm has options itself that can
be enabled [7].

Hardware issues when using MaltParser mainly depend on which learning
algorithm is chosen – both can give state-of-art accuracy but in case of
LIBSVM, less memory is required, whereas LIBLINEAR is much more faster
than LIBSVM (for training and also for parsing, ranging from 2–5 hours for
LIBLINEAR and 8–72 hours for LIBSVM).

4 MaltOptimizer is a free available tool for better and easier optimization of MaltParser,
online at http://nil.fdi.ucm.es/maltoptimizer/

18 Lucia Kocincová

4 MSTParser

MSTParser is a non-projective dependency parser based on searching maxi-
mum spanning trees over directed graphs and is being developed by Jason
Baldrige and Ryan McDonald.

Parser from latest versions supports CoNNL format but it distinguishes
in some minor extent when comparing the input data format which accepts
MaltParser. The system can parse data in its own MST format which is much
more simpler than CoNNL:

w1 w2 w3 ... wn – n words of a sentence
p1 p2 p3 ... pn – POS tags for each word
l1 l2 l3 ... ln – labels of the incoming edge to each word
d1 d2 d3 ... dn – position of each words parent
Each sentence in the format is represented by first three or all four lines,

where each data is tab spaced and whole sentences are space separated.
Optimization of MSTParser includes options such as number of iteration

epochs for training, specifying type of structures for setting parsing algorithm
(either projective or non-projective), denoting order of features and option
if punctuation should be included in Hamming loss calculation. In newer
versions, it is possible to add confidence scores per-edge that mark the parser’s
confidence in correctness of a particular edge.

While experimenting, I also tried out configuration stated in distribution of
MSTParser, but I achieved best accuracy using value 3 for training-k5 and using
more memory than stated to avoid errors caused by running out of memory.

Latest version 0.5.0 was released on 23th January 2012 and the whole
system, developed in Java, is distributed under Apache License V2.06.

Hardware issues with MSTParser are bound with sufficient memory while
training a model, more specifically, the parser need to get a specification of how
much heap space can be taken – I used about 15GB of memory while creating
forest from training file with 1 503 739 tokens.

5 Data

5.1 Training and evaluation data

For training and evaluation purposes, The Prague Dependency Treebank 2.0
(PDT 2.0) was used. The newer version was chosen, because of the fact, that
last two mentioned CoNNL tasks based the training on it. Moreover, updated
version is free of various errors, such as spelling mistakes and faults on
morfological and analytical layer [6].

5 as stated in documentation, the k value is for non-projective structures only approxi-
mate

6 definition available at http://www.apache.org/licenses/LICENSE-2.0.html

http://www.apache.org/licenses/LICENSE-2.0.html

Reproducing Czech Syntactic Parsing Results Published in CoNLL Tasks 19

I used data anotated on analytical layer, which can be described with
following numbers7:

overall train data dtest data etest data
sentences 87 913 68 495 (77.9 %) 9 270 (10.5 %) 10 148 (11.5 %)

tokens 1 503 739 1 171 191 (77.9 %) 158 962 (10.6 %) 173 586 (11.5 %)

For training numerous models, strictly only train part of the DPT 2.0 was
used, so the rest of it – development test (dtest) and evaluation test (etest), was
kept as unseen data. The data were manually disambiguated.

Before running the parsers, the format of the data has to be firstly changed
to the CoNNL format in which a sentence consists of ten columns where each is
tab separated (overview of the column and data meaning can be seen in Table
2) and individual sentences are separated by a blank line.

Table 2. CoNLL format preciselly described

Column # Name Definition
1 ID Token counter (starting at 1 for each new sentence)
2 FORM Word form or punctuation symbol
3 LEMMA Lemma of word form or an underscore if not available
4 CPOSTAG Coarse-grained part-of-speech tag
5 POSTAG Fine-grained part-of-speech tag or identical to the coarse-

grained part-of-speech tag if not available
6 FEATS Unordered set of syntactic and/or morphological features

separated by a vertical bar
7 HEAD Head of the current token, which is either a value of ID or

zero (0) – there may be multiple tokens with an ID of zero
8 DEPREL Dependency relation to the HEAD – the dependency relation

may be meaningfull or simply ’ROOT’
9 PHEAD Projective head of current token, which is either a value of ID

or zero (0)
10 PDEPREL Dependency relation to the PHEAD

5.2 Evaluation metrics

For evaluation, a script was written following basic metrics that shows real
accuracy:

UA =
correcthead

allhead

7 exhausting and precise description of PDT 2.0 can be found at
http://ufal.mff.cuni.cz/pdt2.0/doc/pdt-guide/en/html/ch03.html

20 Lucia Kocincová

LA =
correcthead AND correctlabel

all

Where Unlabeled accuracy (UA) is the ratio between correctly determined
head column (correcthead) and all heads (allhead) and Labeled accuracy (LA) is
the result of correctly determined head column AND correctly determined label
column (correctlabel) at the same row over all rows in evaluation data.

6 Results

I can bring some relevant results that show the approach of obtaining the
results of CoNNL shared tasks is completed. Table 3 presents selected various
combinations of learning and parsing algorithms with results for each accuracy,
labeled and unlabeled achieved on dtest. Parsing algorithms in italics cover
non-projective dependency structures.
In my experiment, I managed to successfully reproduce MaltParser results –
I achieved even higher score in both metrics, labeled and unlabeled accuracy.
However, results with MSTParser were not accomplished, as shows Table 4.

Table 3. Accuracy achieved with MaltParser on dtest so far

learning alg. parsing alg. Unlabeled accuracy Labeled Accuracy
LIBLINEAR nivrestandard 70.62 64.73

covproj 71.43 80.13
stackproj 79.67 73.99
covnonproj 80.58 74.95
stackeager 82.54 77.14
stacklazy 83.17 77.74

LIBSVM nivreeager 83.21 78.42
nivrestandard 81.51 76.37
stackproj 83.00 77.47
stacklazy 85.02 80.05

Table 4. Accuracy achieved with MSTParser on dtest

Unlabeled accuracy Labeled Accuracy
77.73 69.19
83.01 75.34
83.04 75.39

Reproducing Czech Syntactic Parsing Results Published in CoNLL Tasks 21

7 Further experiments and practical applications

Further experiments will follow this attempt by turning the parsers for even
better performance as recently, higher accuracy (about 2% higher in meaning
of LA and 1% of meaning of UA) was published with MaltParser [8] and MST-
Parser [9].
The aim of the approach was not only to get the results but it is far more prac-
tical. Systems with trained models that got the best accuracy will be used for
parsing corpora that will be further utilized for application in SketchEngine8

which is a corpus query system used by various people, including lexicogra-
phers, computer linguists and researchers.

Acknowledgments

This work has been partly supported by the Ministry of the Interior of CR
within the project VF20102014003 and by the Czech Science Foundation under
the project P401/10/0792.

References

1. Buchholz, S., Marsi E.:CoNLL-X Shared Task on Multilingual Dependency Parsing,
In: Proceedings of the Tenth Conference on Computational Natural Language
Learning, pp. 149–164 (2006), published: Stroudsburg, PA, USA, online at
http://dl.acm.org/citation.cfm?id=1596276.1596305

2. Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.,: The
CoNLL 2007 Shared Task on Dependency Parsing, In: Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, published: Association for
Computational Linguistics, Prague, Czech Republic, pp. 915–932 (2007), online at
http://www.aclweb.org/anthology/D/D07/D07-1096

3. Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Martí, M. A., Marquez, L.,
Meyers, A., Nivre, J., Padó, S., Štepánek, J., Straňák, P., Surdeanu, M., Xue, N.,
Zhang, Y.: The CoNLL-2009 shared task: Syntactic and semantic dependencies in
multiple languages. In Proceedings of the Thirteenth Conference on Computational
Natural Language Learning: Shared Task, pp. 1-18 (2009)

4. Nivre, J., Hall, J., Nilsson, J.: MaltParser: A data-driven parser-generator for
dependency parsing, In: Proceedings of LREC-2006, pp. 2216–2219 (2006)

5. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency parsing
using spanning tree algorithms, In: Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language
Processing, pp. 523–530 (2005)

6. Hajič, J.: Complex Corpus Annotation: The Prague Dependency Treebank,
published: Jazykovedný ústav L’. Štúra, SAV, Bratislava, Slovakia, 2004

7. Nivre, J., Hall, J.: A Quick Guide to MaltParser Optimization, online at
http://maltparser.org/guides/opt/quick-opt.pdf

8 http://sketchengine.co.uk/

http://dl.acm.org/citation.cfm?id=1596276.1596305
http://www.aclweb.org/anthology/D/D07/D07-1096
http://maltparser.org/guides/opt/quick-opt.pdf

22 Lucia Kocincová

8. Nivre, J. : Non-Projective Dependency Parsing in Expected Linear Time. In:
Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the
AFNLP, pp. 351-359. Association for Computational Linguistics, Suntec, Singapore.
(2009)

9. Novák, V., Žabokrtský Z.: Feature Engineering in Maximum Spanning Tree
Dependency Parser. In: Proceedings of the 10th International Conference on Text,
Speech and Dialogue. Západočeská univerzita, Plzeň, Czechia. Springer-Verlag
Berlin Heidelberg, LNCS 4629. (2007)

Adaptation of Czech Parsers for Slovak

Marek Medved’, Miloš Jakubíček, Vojtěch Kovář, Václav Němčík

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

{xmedved1,jak,xkovar3,xnemcik}@fi.muni.cz

Abstract. In this paper we present an adaptation of two Czech syntactic
analyzers Synt and SET for Slovak language. We describe the transfor-
mation of Slovak morphological tagset used by the Slovak development
corpora skTenTen and r-mak-3.0 to its Czech equivalent expected by the
parsers and modifications of both parsers that have been performed par-
tially in the lexical analysis and mainly in the formal grammars used in
both systems. Finally we provide an evaluation of parsing results on two
datasets – a phrasal and dependency treebank of Slovak.

Key words: syntactic analysis, parsing, Slovak

1 Introduction

Czech and Slovak are both representatives of Slavonic free-word-order lan-
guages with rich morphology. The most differences between Czech and Slovak
lie in the lexicon – on morphological and even more on syntactic level both lan-
guages are very similar. Currently, there is no full parser available for Slovak,
only tools that produce partial analysis based either on regular expressions [1]
or predicate-argument structure [2]. Because of the syntactic similarity of these
languages, we took the opportunity to adjust two currently available Czech
parsers, Synt and SET, for Slovak.

Syntactic analyzers Synt[3] and SET[4] have been developed over the past
years in the Natural Language Processing Centre at Faculty of Informatics,
Masaryk University. Both systems are rule-based but take a different approach
to the challenges of syntactic analysis. The Synt parser is based on a context-
free backbone enhanced with contextual actions and performs a stochastic
agenda-based head-driven chart analysis. The syntactic parser SET is based on
a simple grammar consisting of regular expressions over morphological tags
and performs segmentation of input sentence according to the grammar rules.

The input for both Synt and SET is a sentence in the form of vertical text
morphologically annotated by the morphological analyzer Ajka[5] which uses
an attributive tagset described in [6]1.

1 Current version of the tagset is available online at http:///nlp.fi.muni.cz/ma/.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 23–30, 2012. c○ Tribun EU 2012

mailto:\protect \T1\textbraceleft xmedved1,jak,xkovar3,xnemcik\protect \T1\textbraceright @fi.muni.cz
http:///nlp.fi.muni.cz/ma/
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

24 Marek Medved’, Miloš Jakubíček, Vojtěch Kovář, Václav Němčík

The output of Synt may be:

– a phrase-structure tree
This is the main output of Synt and consists of a set of phrase-structure
trees ordered according to the tree ranking. The system makes it possible to
retrieve n-best trees effectively.

– a dependency graph
A dependency graph represents a packed structure which can be utilized
to extract all possible dependency trees. It is created by using the head and
dependency markers that might be tied with each rule in the grammar.

– set of syntactic structures
The input sentence is decomposed into a set of unambiguous syntactic
structures chosen by the user.

The output of SET may be:

– a hybrid tree consisting of both dependency and constituent edges,
– a pure dependency tree,
– a pure constituent tree.

In our experiments, we used three Slovak corpora as input for the parsers
– the r-mak 3.0[?] corpus, containing 1.2M tokens and manual morphological
annotation and the skTenTen corpus[7], a large web corpus containing about
876M tokens with automatic morphological annotation, and a subset of a Slo-
vak dependency treebank[8] that is currently under development in the Slovak
Academy of Sciences, which contained more than 12,000 sentences and is fur-
ther referred to as SDT.

For the parsers to be able to process the Slovak input, the following
modifications had to be performed:

– morphological tagging conversion into the format expected by the parsers,
– lexical analysis adjustment in both parsers (e.g. mapping of lexical units to

grammar non-terminals),
– grammar adaptation for both parsers, covering syntactic phenomena in

which Czech and Slovak are different.

2 Morphological tagging conversion

In this section we describe the translation from the Slovak tagset to its coun-
terpart in the Czech tagset and explain the steps necessary for correct function
of syntactic analyzers. Both r-mak 3.0 and skTenTen use a positional tagset.2

For the purpose of converting the annotation into the format given by the
Czech morphological analyser Ajka, a translation script has been created called
sk2cs.py, which takes a vertical text as input and translates each tag to its
Czech equivalent.

2 Available online at http://korpus.sk/morpho.html.

http://korpus.sk/morpho.html

Adaptation of Czech Parsers for Slovak 25

Obviously, there is no 1:1 mapping between tags in the tagsets, e.g. due to
different subclassification paradigms for several part-of-speech (PoS) kinds.
Therefore the translation process consists of three steps:

1. rule-based translation
2. whitelist translation
3. whitelist completion

2.1 Ruled-based tag translation

At first, the input tag is translated using a predefined set of rules that map each
grammatical category to its counterpart in the Czech tagset. If this mapping
is ambiguous (1:n), the program either just chooses the first tag or, optionally,
produces an ambiguous output.

2.2 Whitelist-based tag translation

For words where the PoS of the Slovak tag is different than the one of its Czech
equivalent, a whitelist-based procedure is used that directly maps selected
words to their Czech tags. An example of a problematic translation is the word
mnoho (a lot of) which is said to be an adverb in Czech but a numeral in Slovak.
It should be noted that the morphological classification of this word (and many
others) is a cumbersome issue with no clear solution, and we do not claim that
the Czech or Slovak classification is better than the other one.

2.3 Whitelist-based tag completion

Finally, in some cases the Slovak tagset is less fine-grained than the Czech one
and the resulting tag would not contain enough information for the parsing
to be successful. This concerns e.g. pronouns for which the Slovak tagset does
not contain any subclassification that would distinguish relative, interrogative
and demonstrative pronouns, but both parsers use this kind of information in
their grammar. Fortunately, the sets of all these pronouns are small enough to be
handled case-by-case as well, and therefore the translation process uses another
whitelist to extend the morphological annotation for them.

3 Adaptation of Synt

Synt is a rule-based parser consisting of a context-free grammar (CFG) en-
hanced by in-programmed contextual actions for capturing contextual phe-
nomena like e.g. grammatical agreement. The parsing process consists of two
steps: first a basic chart parsing is performed using the CFG and producing
a large set of candidate analyses in the form of the resulting chart – a packed
forest of trees. On top of the chart, the contextual actions are evaluated, pruning
the analyses space by orders of magnitude and producing final parsing results.

26 Marek Medved’, Miloš Jakubíček, Vojtěch Kovář, Václav Němčík

To prevent maintenance issues a rule-based system may suffer from, the
grammar is developed in the form of a meta-grammar, consisting of only about
250 rules. From this meta-grammar a full grammar is automatically derived by
exploiting per-rule defined derivation actions (e.g. expanding a group of non-
terminals or permutating right-hand side of a meta-rule).

The modifications for Slovak in Synt consist from two parts:

– adaptation of lexical analysis
– adaptation of grammar rules

3.1 Lexical analysis adaptation

In Synt lexical analysis is a process that assigns a pre-terminal (i.e. last
non-terminal in the tree that is directly rewritten to the surface word) to
a given word by using word’s morphological classification. In some cases
(e.g. identification of some named-entities like months, or specific handling of
modal verbs), the lexical analysis exploits not only the tag of the word, but
also its lemma or the word itself. In these cases the analysis had to be modified
(translated) to Slovak.

3.2 Grammar rules adaptation

In the following we list a number of syntactic phenomena that need to be
handled differently in Czech and Slovak.

Sentences with passive Expression of passive in Slovak is different from
Czech. The Czech passive structure is: to be + passive verb (figure 1). But in
Slovak the structure is: to be + adjective.

clause %> is vpasr

vpasr -> VPAS

Fig. 1. Original rule for passive.

Therefore it is necessary to adapt this rule (figure 2). The adaptation consists
of replacing pre-terminal VPAS by pre-terminal ADJ.

clause %> is vpasr

vpasr -> ADJ

Fig. 2. Adapted rule for passive in Slovak language.

Adaptation of Czech Parsers for Slovak 27

Sentences with structure not + to be This structure shows the main difference
between Slovak and Czech. In Slovak (figure not2) this structure is expressed
by two words but in Czech language it is expressed only by one word.

Original: clause %> IS sth

clause %> ARE sth

clause %> VB12 sth

Adapted: clause %> is sth

clause %> are sth

clause %> vb12 sth

is -> IS

is -> IS NOT

are -> ARE

are -> ARE NOT

vb12 -> VB12

vb12 -> NOT VB12

Fig. 3. Adaptation of Czech rule for Slovak structure not + to be

Sentences with structure would + to be The same case as structure not + to
be is the structure would + to be. The modification of this rule (figure4) divides
one word into two words with same semantics.

Original: clause %> VBK sth

Adapted: clause %> vbk sth

vbk -> VBK

vbk -> VBK VB12

Fig. 4. Structure would + to be

Sentences with structure if + to be or that + to be
The next case of Slovak structure which contains two divided words instead

of one word expression is structure if + to be or that + to be. The new rule
describing this two structures is on figure 5.

Sentences with multiple numbers For sentences with structure „three times“
there was no pre-terminal for word „times“ which is written separately in
Slovak. A new rule associated with this pre-terminal was created too. This new
rule can analyzed structure „three times“, or structure „3 times“(figure 6).

28 Marek Medved’, Miloš Jakubíček, Vojtěch Kovář, Václav Němčík

Original: clause %> akvbk sth

akvbk -> KVBK

akvbk -> AVBK

Adapted: clause %> akvbk sth

akvbk -> KVBK is

akvbk -> AVBK is

akvbk -> KVBK are

akvbk -> AVBK are

akvbk -> KVBK vb12

akvbk -> AVBK vb12

Fig. 5. Rule for structure if + to be and that + to be (sk)

numk -> NUMK TIMES

Fig. 6. Added pre-terminal TIMES

3.3 Adaptation of SET

SET is based on a simple grammar mostly consisting of regular expressions over
morphological tags. Similarly to Synt, the grammar is directly lexicalized in
some cases and required appropriate modifications. Besides the lexical analysis,
following changes have been performed to the grammar:

Structure would + to be
In the same way as in Synt, the Czech expression for this structure had to be

divided into two words (figure 7).

TMPL: $PARTICIP $...* $BY $BYBYT MARK 2 DEP 0 PROB 1000

%$BYBYT(word): som si sme ste

%TMPL: $BY $BYBYT MARK 1 DEP 0 PROB 1000

Fig. 7. Structure would + to be

Structure not + to be
The same situation as before is in this case (figure 8).

4 Evaluation

The modifications have been evaluated for both parsers separately. For Synt,
the coverage was measured on two corpora, the r-mak 3.0 and SDT. To convert

Adaptation of Czech Parsers for Slovak 29

%TMPL: $PARTICIP $...* $NOT $BYBYT MARK 2 DEP 0 PROB 1000

%$BYBYT(word): som si sme ste

Fig. 8. Structure not + to be

the SDT treebank from its native XML format into annotated vertical text,
the pdt2vert[9] was used. The precision of Synt was measured on a random
sample of 77 sentences from the skTenTen corpus that were accepted by the
parser and for which a correct constituent tree was determined. The LAA tree
similarity metric [10] was used for the evaluation.

Since SET always produces some dependency tree, only dependency preci-
sion was evaluated against the SDT.

4.1 Evaluation of Synt parser

Corpus Number of sentences Number of accepted
r-mak 3.0 74,127 77 %

SDT 12,762 76.9 %
Table 1. Evaluation of the coverage of Synt

Number of sentences 77
Median number of trees 148
Average number of trees 71595.81

Average LAA of the first tree 87.13
Time per sentence 0.038 s

Table 2. Evaluation of the precision of Synt

4.2 Evaluation of SET parser

Corpus Number of sentences Dependency precision
SDT 12,762 56.7 %

Table 3. Evaluation of the precision of SET

30 Marek Medved’, Miloš Jakubíček, Vojtěch Kovář, Václav Němčík

5 Conclusions and Future Development

In this paper we have presented two Czech parsers, Synt and SET, adapted for
Slovak. These represent first full parsing solutions available for Slovak. In the
future further development of both parsers on Slovak is planned towards better
precision and coverage on larger datasets.

Acknowledgements

We hereby thank Radovan Garabík, L’udovít Štúr Institute of Linguistics,
Slovak Academy of Sciences for his kind help and willingness to provide us
with development and evaluation data. The work has been partly supported by
the Ministry of Education of CR within the LINDAT-Clarin project LM2010013.

References

1. Trabalka Marek, B.M.: Realization of syntactic parser for inflectional language using
XML and regular expressions. In: Text, Speech and Dialogue, volume 1902 of Lecture
Notes in Computer Science, (Springer Berlin / Heidelberg) pages 59–90

2. Ondáš Stanislav, J.J., Čižmár Anton: Extracting sentence elements for the natural
language understanding based on Slovak national corpus. (In: Analysis of Verbal
and Nonverbal Communication and Enactment. The Processing Issues, volume 6800
of Lecture Notes in Computer Science)

3. Jakubíček, M., Horák, A., Kovář, V.: Mining phrases from syntactic analysis. In:
Text, Speech and Dialogue. (2009) 124–130

4. Kovář, V., Horák, A., Jakubíček, M.: Syntactic analysis using finite patterns: A
new parsing system for czech. In: Human Language Technology. Challenges for
Computer Science and Linguistics, Berlin/Heidelberg (2011) 161–171

5. Šmerk, P.: Fast Morphological Analysis of Czech. In: Proceedings of the Raslan
Workshop 2009, Brno (2009)

6. Jakubíček, M., Kovář, V., Šmerk, P.: Czech Morphological Tagset Revisited. Pro-
ceedings of Recent Advances in Slavonic Natural Language Processing 2011 (2011)
29–42

7. Masaryk University, Lexical Computing Ltd.: skTenTen – Slovak web corpus (2011)
http://trac.sketchengine.co.uk/wiki/Corpora/skTenTen, [Online].

8. Gajdošová, K.: Syntaktická anotácia vybraných textov slovenského národného kor-
pusu. In Múcsková, G., ed.: Varia. 16. Zborník materiálov zo XVI. kolokvia mladých
jazykovedcov, Slovak Linguistic Society, L’udovít Štúr Institute of Linguistics, Slo-
vak Academy of Sciences (2009) s. 140 – 148

9. Němčík, V.: Extracting Phrases from PDT 2.0. In Horák, A., Rychlý, P., eds.: Proceed-
ings of Recent Advances in Slavonic Natural Language Processing, RASLAN 2011,
Brno, Tribun EU (2011) 51–57

10. Sampson, G., Babarczy, A.: A test of the leaf-ancestor metric for parse accuracy.
Natural Language Engineering 9(04) (2003) 365–380

http://trac.sketchengine.co.uk/wiki/Corpora/skTenTen

Part II

Logic and Language

Deduction System for TIL-2010

Marie Duží1, Marek Menšík1,2, Lukáš Vích1

1 VŠB - Technical university Ostrava
17. listopadu 15, 708 33 Ostrava, Czech republic

2 Silesian university in Opava,
Bezrucovo namesti 13, 746 01 Opava, Czech Republic

Abstract. The goal of this paper is to introduce a deductive system
for Tichý’s Transparent Intensional Logic (TIL). Tichý defined a sequent
calculus for pre-1988 TIL, that is TIL based on the simple theory of types.
Thus we first briefly recapitulate the rules of this simple-type calculus.
Then we describe the adjustments of the calculus so that it be applicable
to hyperintensions within the ramified hierarchy of types. TIL operates
with a single procedural semantics for all kinds of logical-semantic
context, be it extensional, intensional or hyperintensional. We show that
operating in a hyperintensional context is far from being technically
trivial. Yet it is feasible. To this end we introduce a substitution method
that operates on hyperintensions. The syntax of TIL is the typed lambda
calculus. Its semantics is based on a procedural redefinition of, inter
alia, functional abstraction and application. The only two non-standard
features are a hyperintension (called Trivialization) that presents objects,
including hyperintensions, and a four-place substitution function (called
Sub) defined over hyperintensions.

Key words: Transparent Intensional Logic, TIL, deductive system, infer-
ence

1 Foundations of TIL

From the formal point of view, TIL is a hyperintensional, partial typed λ-
calculus. Thus the syntax of TIL is Church’s (higher-order) typed λ-calculus,
but with the all-important difference that the syntax has been assigned a
procedural (as opposed to denotational) semantics, according to which a
linguistic sense is an abstract procedure detailing how to arrive at an object of a
particular logical type. TIL constructions are such procedures. Thus, abstraction
transforms into the molecular procedure of forming a function, application into
the molecular procedure of applying a function to an argument, and variables
into atomic procedures for arriving at their assigned values.

There are two kinds of constructions, atomic and compound (molecular).
Atomic constructions (Variables and Trivializations) do not contain any other
constituent but themselves; they specify objects (of any type) on which com-
pound constructions operate. The variables x, y, p, q, . . . , construct objects de-
pendently on a valuation; they v-construct. The Trivialisation of an object X (of

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 33–41, 2012. c○ Tribun EU 2012

http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

34 Marie Duží, Marek Menšík, Lukáš Vích

any type, even a construction), in symbols 0X, constructs simply X without
the mediation of any other construction. Compound constructions, which con-
sist of other constituents as well, are Composition and Closure. Composition [F
A1. . . An] is the operation of functional application. It v-constructs the value of
the function f (valuation-, or v-, –constructed by F) at a tuple – argument A
(v-constructed by A1, . . . , An), if the function f is defined at A, otherwise the
Composition is v-improper, i.e., it fails to v-construct anything.3 Closure [λx1. . . xn
X] spells out the instruction to v-construct a function by abstracting over the
values of the variables x1,. . . ,xn in the ordinary manner of the λ-calculi. Finally,
higher-order constructions can be used twice over as constituents of compos-
ite constructions. This is achieved by a fifth construction called Double Execu-
tion, 2X, that behaves as follows: If X v-constructs a construction X′, and X′

v-constructs an entity Y, then 2X v-constructs Y; otherwise 2X is v-improper,
failing as it does to v-construct anything.

TIL constructions, as well as the entities they construct, all receive a type.
The formal ontology of TIL is bi-dimensional; one dimension is made up of con-
structions, the other dimension encompasses non-constructions. On the ground
level of the type hierarchy, there are non-constructional entities unstructured
from the algorithmic point of view belonging to a type of order 1. Given a so-
called epistemic (or objectual) base of atomic types (o-truth values, ι-individuals, τ-
time moments / real numbers, ω-possible worlds), the induction rule for form-
ing functional types is applied: where α, β1,. . . ,βn are types of order 1, the set
of partial mappings from β1 ×. . .×βn to α, denoted ‘(αβ1. . . βn)’, is a type of or-
der 1 as well.4 Constructions that construct entities of order 1 are constructions of
order 1. They belong to a type of order 2, denoted ‘*1’. The type *1 together with
atomic types of order 1 serves as a base for the induction rule: any collection
of partial mappings, type (αβ1. . . βn), involving *1 in their domain or range is a
type of order 2. Constructions belonging to a type *2 that identify entities of or-
der 1 or 2, and partial mappings involving such constructions, belong to a type
of order 3. And so on ad infinitum.

The principle of hyperintensional individuation would slot in between
Church’s Alternatives (0) and (1) as Alternative (3/4), in that α-conversion and
η-conversion together with a restricted principle of β-conversion determine the
procedural individuation of hyperintensions we are operating with.

Laying out the required semantics requires a fair amount of footwork.
Once this is in place, however, all that remains is filling in the nitty-gritty
details of extensional rules such as quantifying-into hyperintensional contexts
and substitution of identicals. The devil is in the detail, as ever, and defining

3 We treat functions as partial mappings, i.e., set-theoretical objects, unlike the construc-
tions of functions.

4 TIL is an open-ended system. The above epistemic base {o, ι, τ, ω}was chosen, because
it is apt for natural-language analysis, but the choice of base depends on the area and
language to be analysed. For instance, possible worlds and times are out of place in
case of mathematics, and the base might consist of, e.g., o and ν, where ν is the type
of natural numbers.

Deduction System for TIL-2010 35

extensional rules of inference for hyperintensional contexts is far from being
technically trivial. But it is feasible, which we are going to show in the
rest of the paper. When defining extensional rules for operating in (hyper-
)intensional contexts we encounter two main problems, namely the problem
of substitution of identicals (Leibniz) and existential generalization. A common
idea is that extensional (etc.) contexts are those that validate quantifying-in
and substation of identicals. And conversely, if a context resists some of these
rules, it is deemed to be in violation of one or more of the laws of extensional
logic and as eluding full logical analysis. What we are saying is that also
intensional and hyperintensional contexts may be quantified into, but that the
feasibility of doing so presupposes that it be done within an extensional logic
of hyperintensional contexts.

2 Tichý’s sequent calculus

Tichý proposed a solution of the substitution and existential generalization
problem in his (1982, 1986) and defined a sequent calculus for the pre-1988
TIL, that is for extensional and intensional contexts. The solution is restricted
to the so-called linguistic constructions of the form λwλt[C1C2 . . . Cm] or
λwλt[λx1 . . . xmC].

2.1 Substitution and existential generalization

a) Substitution. a = b; C(a/x)⊢C(b/x)
This rule seems to be invalid in intensional contexts. For instance, the following
argument is obviously invalid:

The President of ČR is the husband of Livie.
Miloš Zeman wants to be the President of ČR.
Miloš Zeman wants to be the husband of Livie.

b) Existential generalization. C(a/x)⊢ ∃xC(x)
Again, in intensional contexts this rule seems to be invalid. For instance, the
following argument is obviously invalid:

Miloš Zeman wants to be the President of ČR.
The President of ČR exists.

Ad a) Tichý defines in (1986) hospitality for substitution. In principle, there are
four cases. If a variable z is (1,1) hospitable, then the construction of the form
[Xwt] is substitutable for z. That is, z occurs in an extensional (de re) context.
If a variable z is (1,0) hospitable, then the construction of the form [X w] is
substitutable for z. That is, z occurs in an intensional (de dicto) context with
respect to time t. If a variable z is (0,1) hospitable, then the construction of the
form [X t] is substitutable for z. That is, z occurs in an intensional (de dicto)
context with respect to a world w. Finally, if a variable z is (0,0) hospitable,
then the construction of the form X is substitutable for z. That is, z occurs in an
intensional (de dicto) context with respect to both t and w.

36 Marie Duží, Marek Menšík, Lukáš Vích

Ad b) Exposure and existential generalization. Let x be (1,1)-hospitable, D(k, l)
substitutable for x in C. Then the following rule is valid:

C(D(k, l)/x) ⊢ λwλt∃x C(x)

Example. λwλt [Ekonomwt PCRwt] ⊢ λwλt∃x[Ekonomwt x]; (Ekonom/(oι)τω;
PCR/ιτω; x →v ι.)

2.2 Sequent calculus

Basic notions we need are these.
Match is a pair a : C, where a, C → α and a is an atomic construction. A

match a:C is satisfied by a valuation v, if a and C v-construct the same object;
match :C is satisfied by v, if C is v-improper; matches a:C # b:C are incompatible,
if a, b construct different objects; matches a:C # :C are incompatible.

Sequent is a tuple of the form a1:C1, . . . , am:Cm → b:D, for which we use a
generic notation Φ → Ψ; A sequent Φ → Ψ is valid if each valuation satisfying
Φ satisfies also Ψ;

Next we define rules preserving validity of sequents.
Structural rules.

1. ‖ Φ → Ψ, if Ψ ∈ Φ (trivial sequent)
2. Φ → Ψ ‖ Φs → Ψ, if Φ ⊆ Φs (redundant match)
3. Φ, ϑ → Ψ; Φ → ϑ ‖ Φ → Ψ (simplification)
4. ‖ Φ → y:y (trivial match)
5. Φ → ϑ1; Φ → ϑ2 ‖ Φ → Ψ, if ϑ1 and ϑ2 are incompatible
6. Φ, :ϑ → Ψ; Φ, y:ϑ → Ψ ‖ Φ → Ψ(y is not free in ...)

Application rules.

7. a-instance (modus ponens):

Φ → y:[FX1. . . Xm], Φ, f :F, x1:X1,. . . ,xm:Xm → Ψ ‖ Φ → Ψ, (f , xi, different
variables, free in Φ, Ψ, F, Xi)

8. a-substitution:
(i) Φ → y:[FX1. . . Xm], Φ → x1:X1,. . . ,Φ → xm:Xm ‖ Φ → y:[Fx1. . . xm]
(ii) Φ → y:[Fx1. . . xm]; Φ → x1:X1,. . . , Φ → xm:Xm ‖ Φ → y:[FX1. . . Xm]

9. extensionality:

Φ, y:[f x1. . . xm] → y:[gx1. . . xm]; Φ, y:[gx1. . . xm] → y:[f x1. . . xm] ‖ Φ → f :g
(y, x1,. . . ,xm are different variables that are not free in Φ, f , g.)

λ-rules.

10. Φ, f :λx1. . . xmY → Ψ ‖ Φ → Ψ(f is not free in Φ, Y,Ψ)
11. β-reduction:

Φ → y:[[λx1. . . xmY] X1. . . Xm] ‖
Φ → y:Y(X1. . . Xm/x1. . . xm); (Xi is substitutable for xi)

12. β-expansion:
Φ → x1:X1;. . . ; Φ → xm:Xm; Φ → y:Y(X1. . . Xm/x1. . . xm) ‖
Φ → y:[[λx1. . . xmY] X1. . . Xm]

Deduction System for TIL-2010 37

3 Generalization for TIL 2010

Our goal is to generalize the calculus so that it involves ramified theory of
types, all kinds of constructions, existential generalization to any contexts and
substitution of identicals in any kind of context. To this end we first specify the
free kinds of context.5

3.1 Three kinds of context

Constructions are full-fledged objects that can be not only used to construct an
object (if any) but also serve themselves as input/output objects on which other
constructions (of a higher-order) operate. Thus we have:

Hyperintensional context: the sort of context in which a construction is not
used to v-construct an object. Instead, the construction itself is an argument of
another function; the construction is just mentioned.

Example. “Charles is solving the equation 1 + x = 3”. When solving the
equation, Charles wants to find out which set (here a singleton) is constructed
by the Closure λx[0= [0+ 01 x] 03]. Hence this Closure must occur hyper-
intensionally, becuase Charles is related to the Closure itself rather than its
product, a particular set. Otherwise the seeker would be immediately a finder
and Charle’s solving would be a pointless activity. The analysis comes down to:

λwλt[0Solvewt
0Charles 0[λx[0= [0+ 01 x] 03]]].

Intensional context: the sort of context in which a construction C is used to
v-construct a function f but not a particular value of f ; moreover, C does not
occur within another hyperintensional context.

Example. “Charles wants to be The President of Finland”. Charles is re-
lated to the office itself rather than to its occupier, if any. Thus the Closure
λwλt[0President_of wt

0Finland] must occur intensionally, because it is not used
to v-construct the holder of the office (particular individual, if any). The sen-
tence is assigned as its analysis the construction

λwλt[0Want_to_bewt
0Charles λwλt[0President_ofwt

0Finland]].

Extensional context: the sort of context in which a construction C of a function
f is used to construct a particular value of f at a given argument, and C does
not occur within another intensional or hyperintensional context.

Example. “The President of Finland is watching TV”. The analysis of this
sentence comes down to the Closure

λwλt[0Watchwt λwλt[0President_ofwt
0Finland]wt

0TV].

The meaning of ‘the President of Finland’ occurs here with de re supposition,
i.e. extensionally.

5 For exact definitions see [5, §2.6] and also [2, Chapter 11].

38 Marie Duží, Marek Menšík, Lukáš Vích

3.2 Extensional calculus of hyperintensions

First we specify the rules of existential generalization and substitution rules
for all kinds of context and for any constructions. In order to operate in hy-
perintensional context we need to introduce a four-place substitution function,
Sub/(*n *n *n*n), defined over hyperintensions. When applid to constructions
C1, C2 and C3 the function returns as its value the construction D that is the
result of correctly substituting C1 for C2 into C3.

Let F/(αβ); a/α. First we specify the rules for existential generalisation.6

a) extensional context.
Let an occurrence of the Composition [. . . [0F 0a]. . .] be extensional and let it

v-construct the truth-value T. Then the following rule is valid:

[. . . [0F 0a] . . .] ⊢ ∃x[. . . [0Fx] . . .]; x →v α

Example. „Pope is wise.“ |= „Somebody is wise“.

λwλt[0Wisewt
0Popewt] |= λwλt∃x[0Wisewt x];

b) intensional context.
Let [0F 0a] occur intensionally in [. . . λy [. . . [0F 0a] . . .]] that v-constructs T.

Then the following rule is valid:

[. . . λy[. . . [0F 0a] . . .]] ⊢ ∃ f [. . . λy[. . . [f 0a] . . .]]; f →v (αβ)

Example. „b believes that Pope is wise“. |= „There is an office such that b
believes that its holder is wise“.

λwλt[0Believewt
0b λwλt[0Wisewt

0Popewt]] |=
λwλt∃ f [0Believewt

0b λwλt[0Wisewt fwt]];

c) hyperintensional context.
Let [0F 0a] occur hyperintensionally in a construction [. . . 0[. . . [0F 0a] . . .]] that

v-constructs T. Then the following rule is truth-preserving:

[. . . 0[. . . [0F 0a] . . .]] ⊢ ∃c 2[0Sub c 00F 0[. . . 0[. . . [0F 0a] . . .]]];
c →v *n; 2c →v (αβ)

Example. „b believes* that Pope is wise.“ |= „There is a concept of an office
such that b believes* that the holder of the office is wise.“

λwλt[0Believe*wt
0b 0[λwλt[0Wisewt

0Popewt]] |=
λwλt∃c[0Believe*wt

0b [0Sub c 00Pope 0[λwλt[0Wisewt
0Popewt]]]];

(Believe*/(oι*n)τω : hyperpropositional attitude; c →v *n; 2c →v ιτω.)

6 For details see [1].

Deduction System for TIL-2010 39

Second, here are the rules for substitution (Leibniz).

a) In an extensional context substitution of v-congruent constructions is valid.
b) In an intensional context (modalities, notional attitudes, . . .) substitution of

equivalent (but not only v-congruent) constructions is valid.
c) In a hyperintensional context (propositional attitudes, mathematical sen-

tences, . . .) substitution of procedurally isomorphic (but not only equiva-
lent) constructions is valid.

Third, we must specify how to manage partial functions, that is composition-
ality and non-existence. If a function F has no-value at an argument a (value
gap) then the Composition [0F 0a] is v-improper, and so is any construction C oc-
curring extensionally and containing [0F 0a] as a constituent; partiality is strictly
propagated up:

[. . . [. . . [0F 0a] . . .] . . .] is v-improper until the context is raised up to hyper/in-
tensional level:

intensional context : λx. . . [. . . [. . . [0F 0a] . . .] . . .] is v-proper
hyperintensional context: 0[. . . [. . . [0F 0a] . . .] . . .] is v-proper

The rules of sequent calculus remain as specified by Tichý with one important
exception. Tichý’s λ-rules involve β-reduction ‘by name’. This rule is validity
preserving, but we need a stronger rule that would guarantee equivalency
between redex and reduct in the sense that both either v-construct the same
object or both are v-improper. Moreover, β-reduction ‘by name’ can yield a loss
of analytic information.7

β-reduction ‘by name’ in the sequent calculus:
Φ → y:[[λx1. . . xmY] X1. . . Xm] ‖ Φ → y:Y(X1. . . Xm/x1. . . xm); (Xi is

substitutable for xi)
In logic of partial functions the rule of transformation [[λx1. . . xmY]

X1. . . Xm] ⊢Y(X1 . . . Xm/x1 . . . xm) is not equivalent, because the left-hand side
can be v-improper while the right-hand side v-proper by constructing a degen-
erated function that is undefined for all its arguments. To illustrate the loss of
analytic information, consider two redexes [λx[0+ x 01] 03] and [λy[0+ 03 y] 01].
They both β-reduce to [0+ 03 01]. In the resulting Composition we lost the track
of which function has been applied to which argument. As a solution we pro-
pose the rule of β-reduction by value that is valid and applicable in any context.
Let xi →v αi be mutually distinct variables and let Di →v αi(1 ≤ i ≤ m) be con-
structions. Then the following rule is valid:

[[λx1. . . xmY]D1. . . Dm] ⊢ 2[0Sub [0Trα1D1]
0x1 . . . [0Sub [0Trαm Dm]

0xm
0Y]]

Example. “John loves his own wife. So does the Mayor of Ostrava.”
λwλt [λx [0Lovewt x [0Wife_of wt x]] 0John] =βv

λwλt 2[0Sub 00John 0x 0[0Lovewt x [0Wife_of wt x]]]

7 For details see [3].

40 Marie Duží, Marek Menšík, Lukáš Vích

λwλt [so_doeswt
0MOwt] →

λwλt 2[0Sub 0[λwλtλx[0Lovewt x[0Wife_of wt x]]] 0so_does 0[so_doeswt
0MOwt]] =βv

λwλt [λx [0Lovewt x [0Wife_of wt x]] 0MOwt] =βv

λwλt 2[0Sub [0Tr 00MOwt] 0x 0[0Lovewt x [0Wife_of wt x]]].

One can easily check that in all these construction whether reduced or non-
reduced the track of the property of loving one’s own wife is being kept. This
property is constructed by the Closure λwλtλx [0Lovewt x [0Wife_of wt x]]. When
applied to John it does not turn into the property of loving John’s wife. And the
same property is substituted for the variable so_does into the second sentence.
Thus we can easily infer that John and the Mayor of Ostrava share the property
of loving their own wives.

4 Conclusion

We described generalization of Tichý’s sequent calculus to the calculus for TIL
2010. The generalization concerns these issues. First, the extensional rules of
existential generalization and substitution of identicals were generalized so that
to be valid in any context, including intensional and hyperintensional ones.
Second, we showed that the sequent calculus remains to be the calculus for TIL
based on the ramified hierarchy of types with one important exception, which
is the rule of β-reduction. We specified a generally valid rule of β-reduction ‘by
value’ that does not yield a loss of analytic information about which function
has been applied to which argument. No doubt that these are valuable results.

Yet some open problems and questions remain. Among them there are in
particular the question on completeness of the calculus and the problem of its
implementation.

Acknowledgements

The research reported herein was funded by Grant Agency of the Czech
Republic Projects No. 401/10/0792, “Temporal Aspects of Knowledge and
Information”, 401/09/H007 ‘Logical Foundations of Semantics’ and also by the
internal grant agency of VSB-Technical University Ostrava, Project SP2012/26,
“An utilization of artificial intelligence in knowledge mining from software
processes”.

References

1. Duží, M. (2012): Towards an extensional calculus of hyperintensions. Organon F, 19,
supplementary issue 1, pp. 20–45.

2. Duží, M., Materna P. (2012): TIL jako procedurální logika. Průvodce zvídavého
čtenáře Transparentní intensionální logikou.

3. Duží, M., Jespersen, B. (to apper), Procedural isomorphism, analytic information,
and beta-conversion by value, forthcoming in Logic Journal of the IGPL, Oxford.

Deduction System for TIL-2010 41

4. Duží, M., Číhalová, M., Ciprich, N., Frydrych, T., Menšík, M. (2009): Deductive
reasoning using TIL. In RASLAN’09, Recent Advances in Slavonic Natural Langure
Processing. Ed. Sojka, P., Horák, A.. Brno: Masarykova universita, pp. 25–38.

5. Duží, M., Jespersen B., Materna P. (2010): Procedural Semantics for Hyperinten-
sional Logic; Foundations and Applications of Transparent Intensional Logic. Series
Logic, Epistemology and the Unity of Science. Berlin, Heidelberg: Springer.

6. Tichý, P. (1982): Foundations of partial type theory. Reports on Mathematical Logic, 14:
pp. 52–72. Reprinted in (Tichý 2004: pp. 467–480).

7. Tichý, P. (1986): Indiscernibility of identicals. Studia Logica, 45: pp. 251–273.
Reprinted in (Tichý 2004: pp. 649–671).

Czech Knowledge-Based System
with Temporal Reasoning

Andrej Gardoň

Faculty of Informatics, Masaryk University
Brno, Czech Repulic
xgardon@fi.muni.cz

Abstract. In this paper we discuss recent advancements in the field of
knowledge representation and question-answering using natural lan-
guage interfaces. The focus is to reveal projects’ weak capabilities in
temporal processing, namely time modeling and reasoning over tempo-
ral facts. With these deficiencies in mind, we propose new knowledge-
based system called Dolphin suitable to parse sentences in Czech lan-
guage, identify and model temporal information and infer answers to
questions regarding time information. Fundamental theory behind Dol-
phin is Transparent Intensional Logic, which is high-order intensional
logic calculus. Finally, we discuss Dolphin evaluation and future work.

Key words: question-answering, time representation, Dolphin

1 Introduction

Advancements in computer vision [1], artificial muscle fiber [2] and state-of-
the-art systems including IBM Watson [3] have fundamentally influenced in-
teraction between computers and humans. Projects like Watson, TrueKnowl-
ege [4] or AURA [5]) aim at providing natural language interface to a user.
They answer questions about factual or even scientific knowledge. Expansion
of smart-phones, equipped with powerful processors, allows research in per-
sonal assistants that interact with the user and provide necessary information
in real-time. Siri is an assistant for Apple phones and it focuses on question-
answering in given domains. It waits for activation words and then uses so
called active ontologies to answer the question. Siri even tells jokes [6]! Google’s
huge database of information, stored within its search engine, provides factual
answers on natural language inputs to Google Now assistant1. It can also find
navigation guidelines. Evi2 is based on TrueKnowledge technology and is espe-
cially built for everyday information retrieval including answering the request
"give me a list of restaurants in my area". Aforementioned projects prove the pos-
sibility to move from standard key-driven approach in information retrieval

1 http://www.google.com/landing/now
2 http://www.evi.com

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 43–50, 2012. c○ Tribun EU 2012

xgardon@fi.muni.cz
http://www.google.com/landing/now
http://www.evi.com
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

44 Andrej Gardoň

towards more human-like methods. While processing of natural language in-
put is well established, processing of temporal aspect is almost new feature in
the projects.

2 Time representation and temporal reasoning

Time is an inseparable part of the space. Both components form so called time-
space, the World in which our lives take place. Almost any utterance in nat-
ural language regards time information either in explicit or implicit form. For
search engines like Google, representing temporal information is not manda-
tory as seeking for factual information is nearly time independent. However,
assistants like Siri or Evi must realize time dimension to become human-like
secretary. It is surprising that the most advanced question-answering system
Watson is only able to detect basic temporal expressions. Its processing engine
detects TLink (defined in TimeML [7]) relation in the input sentence and can-
didate answers. That relation specifies the end points of a general temporal
relationship. To eliminate candidates that are temporally incompatible with the
question, Watson computes before feature of the clue to determine whether it
is chronologically before the entity came into the existence [8]. TrueKnowledge
defines Temporal partner as a fact that references other fact and makes asser-
tion about its validity. Key element of temporal partner is a Timepoint, sin-
gle moment on the time line. Timeperiod is a class of two time points and is
equivalent to an interval with start and end points. To cover infinite and in-
definite time periods there are special objects including iafter=unknown point in
the future, timezore=point in time infinitely ago, forever=infinite future [9]. Aura is
a project that aims to provide scientific knowledge to everyone by natural lan-
guage interface to books. HaloBook is a next generation electronic book based
on Aura technology. The reader can interactively read the text (self-explanatory
tooltips), ask questions and get explanations or learn the content through in-
dividualized tutoring [10]. Besides these advanced features, AURA supports
just basic event ordering and partitioning of knowledge into situations. A sit-
uation represents changes of facts during time. Ordering of situations is also
possible [11]. Advanced model of time is available in Cyc ontology. It utilizes
two abstractions of time. The first one is interval-based and defines relations
between intervals thanks to the primitives: before and simultaneousWith. The sec-
ond one is set-based and it can state axioms like "people do not eat and sleep at the
same time". Temporal projection axioms associate default periods of persistence
with propositions. With their use, it is possible to infer the name of a person
in the future [12]. ThoughtTreasure is a comprehensive platform for natural
language processing and common sense reasoning. It can keep a calendar up-
to-date based on natural language input. Timestamps are basic objects for time
representation and their combinations form timestamps ranges. Durations de-
fine the length of a given interval and Extended timestamps ranges represents

Czech Knowledge-Based System with Temporal Reasoning 45

Fig. 1. Architecture of the Dolphin system

repeating or regularly scheduled events. ThouhtTreause looks to have the most
advanced time model. On the other side it is ontology oriented. Set of special-
ized agents analyzes input texts and extract information that is encoded in the
self-contained ontology. To utilize ThoughtTreasure on a new domain, the on-
tology has to be extended and agents must be added [13].

While temporal processing by knowledge systems is in early ages, support
by formal languages is well established. TimeML is an example. This annota-
tion language addresses time stamping of events, ordering of events, reasoning
with underspecified temporal expressions (e.g. last week) and reasoning about
the persistence of events. Events are defined as situations that happen or oc-
cur, and their detection is separated from identification of relations between
them [7]. Interval temporal logic represents both propositional and first-order
reasoning over period of time3 . Transparent Intensional Logic (TIL) is a com-
prehensive high-order calculus that supports grammatical tenses, representa-
tion of events and episodes. It can process sentences like "I go swimming every
Friday" and undefined time points and intervals like in "I was there". Besides
excellent temporal support, TIL can handle personal attitudes and incorporates
the model of possible worlds. All these benefits make it good candidate for a
knowledge-representation [14].

3 Dolphin system

Dolphin is a knowledge-based system that aims to process sentences in natural
language, translate them into TIL formulas and provide reasoning capabilities
to allow question-answering. Motivation for the project is to develop an

3 http://en.wikipedia.org/wiki/Interval_temporal_logic

http://en.wikipedia.org/wiki/Interval_temporal_logic

46 Andrej Gardoň

Fig. 2. Meaning of the Father relation

advanced knowledge-based system primarily understanding other language
than English. In case of Dolphin, the mother language is Czech. As far as
the authors known, there is no such system yet. Orientation on Czech is not
limiting as architecture of the system is language independent. To support new
language, one has to provide language specific decoder and encoder modules.
Main goal of the project is advanced temporal processing. The system identifies
most of temporal expressions in sentences and disposes by inference rules
for their processing. Events and episodes are useful concepts from TIL that
enable Dolphin to represent coherent view of subsequent situations and model
relations between them. TIL supports deep analysis of grammatical tenses,
undefined time intervals, repetitive activities and thus handles the most of
time information in any sentence. Gardoň and Horák provide comprehensive
introduction to temporal processing in Dolphin [15]. Following sections briefly
describe essential modules from Dolphin’s architecture depicted on Figure 1

– DiAs (Dialogue Assistant) handles the dialogue between a user and the
system. It proposes questions to be asked and manages inputs/outputs
from decoder and encoder modules.

– Decoder is a plug-in module that generally incorporates parser and PiPi
(Post Processing). Input is the sentence in given language. After processing,
there is a TIL construction on the output. Parser analyses the sentence
to obtain syntactical, lexical, morphological and relational data from the
sentence’s parts. Based on the analysis, the parser translates the sentence
into TIL construction. PiPi has to evaluate additional information from
the sentence and prepare final output. For example, it utilizes anaphora
resolution tool. In case of a question, it transforms simple TIL construction
into TIL match that orders subsequent modules to treat the input as a
query. In case of ambiguous parsing, decoder informs subsequent module
about alternative inputs. For the purposes of Dolphin, we have utilized Synt
parser that processes Czech sentences [16] and Saar a system for automatic
anaphora resolution [17].

– LaMa (Language Manager) is a key component responsible for language
independency of the system. TIL constructions encodes crucial information

Czech Knowledge-Based System with Temporal Reasoning 47

from the sentence in procedure-like fashion. For example "John is a father
of Andrew" is represented as a procedure Father over arguments John and
Andrew. LaMa maps any procedure or argument on a referent’s ID. TIL
is based on the three-fold expression-meaning relation as depicted on the
Figure 2. The picture represents meaning of the relation Father that is
mapped on corresponding TIL construction (sense). The construction is an
abstract procedure that construct a referent. Dolphin system approximates
every referent in object-oriented manner, and it assigns universal ID to such
approximation that is called Referent.

– TEA POT is heart of the system. TEA (Til Execution Agent) first invokes
LaMa to translate TIL construction into R-format (words are substituted
for referent IDs). The result of TEA is named R-TIL (referential TIL). TEA
passes the processing of R-TIL to POT (Processing and Organizing Tool)
that parses the construction and identifies its components (sub construc-
tions). POT utilizes R-TREE and R-RULES to propose a response on the
input that is send to Encoder module.

– R-TREE is the knowledge-base. It stores R-TIL constructions and provides
methods for their manipulation. R-TIL Construction is kind of a function
with exactly one result. Thus every R-TIL construction stores referenced R-
TIL construction. Knowledge is organized into possible worlds, fundamen-
tal concept of TIL. It allows one fact to have different truthfulness depend-
ing on the considered world. It also makes it possible to process dialogue
with a user in a separate world and reflect new knowledge only after final
checking proved the consistence with the general world. Knowledge-base
incorporates four components:
∙ R-Book – basic evidence of registered Referents. It allows answering

questions like "Is every object that you know red?"
∙ R-Origin – a list of R-TIL constructions that referent particular R-TIL

construction. This component tracks every natural language represen-
tation that denotes given Referent.

∙ R-Index – indexing component that provides rapid search.
∙ R-Statistics – Automatic prototype generation. It can be turned on/off

for every R-TIL construction. Constructions representing a set have pro-
totype generation initially activated. Prototype is a statistical member
of a set. It represents the distribution of properties over legitimate set
members. This allows to infer answer for question "Can every bird fly?".
With the knowledge that pigeon cannot fly, corresponding distribution
of fly property for every bird is under 100%. Thus, Dolphin can generate
answer "Almost all birds can fly".

– ROOT is brain of the system. It consists of the repository of inference rules
and ExRe (External Resources) component. These rules can be invoked to
prove a statement, find an answer for a question, keep the consistency of
the R-TREE or generate new knowledge. Besides rules in R-TIL format
(e.g. R-TIL representation of if-then statements), ROOT contains direct C++
functions (C-rules) mapped on particular Referents. C-rules allow Dolphin
to be interactive with outside components or boost the performance of

48 Andrej Gardoň

heavy-load inference rules treated in R-TIL-way. ExRe component is an
API for external resources. Dolphin system employs Czech WordNet and
Verbalex4 as essential resources of common-sense. When the system needs
additional information about Referent (not found in R-TREE), it queries
ExRe component to possible obtain it. In future, interactive games like X-
plain5 can be used to ask a user for required knowledge.

– Encoder plug-in module that transforms R-TIL constructions back to natu-
ral language sentences.

4 Evalution and future work

Dolphin system is the highlight of author’s thesis. In three years horizon, the
goal is to implement essential Dolphin modules namely LaMa, TEA POT, R-
TREE and ROOT. Previous research and prototype implementations of Dolphin
system [18], [19], and [20] already contain parts of aformentioned modules
and are valuable sources of information for the planned work. We expect
the ROOT component to contain inference rules for temporal processing and
ExRe implementations for Czech WordNet and Verbalex. To evaluate the
system capabilities we plan to build a corpus of condensed news articles.
Lidovky.cz or Tyden.cz provides summarizations at the top of each article.
These summarizations are ideal start texts for the corpus. Basic Czech decoder
(based on Synt and Saara) and manual refinement will transform corpus
knowledge into internal R-TIL representation. This combination will also
handle mainly time oriented questions contained in the corpus. These questions
will demonstrate the system abilities to handle undefined time intervals,
repetitive actions and contiguous events grouped in episodes. Output will be
presented in clear and readable form (Encoder is not a part of current effort).
In future, we hope to complete the Decoder for Czech to automatically parse
any input. With the finalization of Encoder and Dias, Dolphin will become full-
value member of the question-answering community. Our long-time goal is to
develop Siri like assistant oriented on time management and planning.

5 Conclusions

This paper provides brief overview of current advancements in question-
answering systems. It identifies a gap in their temporal abilities and proposes
the architecture of Dolphin system that should enhance time processing by
handling undefined intervals, repetitive actions and contiguous events. Being
the long time effort, author reveals his intentions in project’s implementation
and uncovers further plans.

4 http://nlp.fi.muni.cz/cs/VerbaLex
5 http://nlp.fi.muni.cz/projekty/x-plain/rules.php

http://nlp.fi.muni.cz/cs/VerbaLex
http://nlp.fi.muni.cz/projekty/x-plain/rules.php

Czech Knowledge-Based System with Temporal Reasoning 49

Acknowledgments

This work has been partly supported by the Czech Science Foundation under
the project P401/10/0792.

References

1. Connolly, C.: A new integrated robot vision system from fanuc robotics. The
Industrial Robot 34(2) (2007) 103–106

2. Shahinpoor, M., Kim, K., Mojarrad, M.: Artificial Muscles: Applications of Ad-
vanced Polymeric Nanocomposites. Taylor & Francis (2007)

3. Ferrucci, D.A.: Introduction to "This is Watson". IBM Journal of Research and
Development 56(3/4) (2012)

4. Tunstall-Pedoe, W.: True Knowledge: Open-domain question answering using
structured knowledge and inference. AI Magazine 31(3) (2010) 80–92

5. Gunning, D., et al.: Project Halo update—progress toward digital Aristotle. AI
Magazine 31(3) (2010) 33–58

6. Aron, J.: How innovative is apple’s new voice assistant, Siri? New Scientist
212(2836) (2011) 24 –

7. Pustejovsky, J., et al.: The Specification Language TimeML. In Mani, I., Pustejovsky,
J., Gaizauskas, R., eds.: The Language of Time: A Reader. Oxford University Press
(2004)

8. Kalyanpur, A., et al.: Structured data and inference in deepqa. IBM Journal of
Research and Development 56(3/4) (2012)

9. Tunstall-Pedoe, W.: Knowledge storage and retrieval system and method (2006)
10. Gunning, D.: Halobook and progress towards digital aristotle. In: Innovative

Applications of Artificial Intelligence, San Francisco, CA (2011) Invited talk.
11. Clark, P., Porter, B.: Km - situations, simulations, and possible worlds. Technical

report, AI Lab, Univ Texas at Austin (1999)
12. Lenat, D.B., et al.: Cyc: toward programs with common sense. Commun. ACM 33(8)

(1990) 30–49
13. Mueller, E.T.: Natural Language Processing with Thought Treasure. Signiform

(1998)
14. Horák, A.: The Normal Translation Algorithm in Transparent Intensional Logic for

Czech. PhD thesis, Masaryk University (2002)
15. Gardoň, A., Horák, A.: Time dimension in the dolphin nick knowledge base using

transparent intensional logic. In Habernal, I., Matoušek, V., eds.: Proceedings of
the 14th international conference on Text, speech and dialogue. Lecture Notes in
Computer Science / Lecture Notes in Artificial Intelligence, Springer (2011)

16. Horák, A.: Computer Processing of Czech Syntax and Semantics. Librix.eu, Brno,
Czech Republic (1998)

17. Němčík, V.: The Saara framework: An anaphora resolution system for czech. In:
RASLAN 2009: Recent Advances in Slavonic Natural Language Processing, Karlova
Studánka, Czech Republic, Masaryk University, Brno, Czech Republic (2009) 49–54

18. Gardoň, A., Horák, A.: The learning and question answering modes in the dolphin
system for the transparent intensional logic. In: RASLAN 2007 : Recent Advances
in Slavonic Natural Language Processing, Karlova Studánka, Czech Republic,
Masaryk University, Brno (2007) 29–36

50 Andrej Gardoň

19. Gardoň, A.: Dotazování s časovými informacemi nad znalostmi v transparentní
intenzionální logice (in slovak) (2010)

20. Gardoň, A., Horák, A.: Knowledge base for transparent intensional logic and its
use in automated daily news retrieval and answering machine. In: 3rd International
Conference on Machine Learning and Computing (ICMLC 2011), Singapore, IEEE
(2011) 59–63

Linguistic Logical Analysis of Direct Speech

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář

Faculty of Informatics
Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic
{hales, xjakub, xkovar3}@fi.muni.cz

Abstract. Logical analysis of natural language allows to extract semantic
relations that are not revealed for standard full text search methods.
Intensional logic systems, such as the Transparent Intensional Logic
(TIL), can rigorously describe even the higher-order relations between the
speaker and the content or meaning of the discourse.
In this paper, we concentrate on the mechanism of logical analysis of di-
rect and indirect discourse by means of TIL. We explicate the procedure
within the Normal Translation Algorithm (NTA) for Transparent Inten-
sional Logic (TIL), which covers the language analysis on the syntactic
and semantic levels. Particular examples in the text are presented in syn-
tactically complicated free-word-order language, viz the Czech language.

Key words: direct speech, indirect speech, Transparent Intensional Logic,
TIL, Normal Translation Algorithm, NTA, logical analysis, syntactic anal-
ysis, parsing

1 Introduction

The analysis of natural language texts on morphological and syntactic levels
already achieved application level quality, for the mainstream languages [1].
On the other hand, the analysis of various aspects on the semantic level is
still on the way to quality knowledge analysis and extraction (see e.g. [2] or
other SemEval 2012 task results). Standard data mining and search techniques
have already reached the top of their potential and researchers and knowledge
engineers employ semantics in the natural language processing [3,4,5,6]. Most
current practical systems that need to utilize knowledge representation of
natural language in formal logic usually do not go beyond the scope of first-
order logic, even though in the language, there is a number of higher-order
phenomena such as belief attitudes, grammatical tenses or intensionality, all of
which cannot be addressed properly within the first-order logic.

In the following text, we are dealing with logical analysis of natural lan-
guage (NL) using the formalism of the Transparent Intensional Logic (TIL, [7]),
an expressive higher-order logical system introduced by Pavel Tichý [8,9],
which works with a complex hierarchy of types, temporal system of possible
worlds and an inference system in development.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 51–59, 2012. c○ Tribun EU 2012

http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

52 Aleš Horák, Miloš Jakubíček, Vojtěch Kovář

The current work is a part of a long-term project aimed at providing norms
for the “translation” of various NL phenomena to logical constructions, the
Normal Translation Algorithm (NTA) [10,11]. The actual implementation of the
system works on top of the Czech syntactic parser synt [12]. Synt is based
on the robust meta-grammar formalism including context-free chart parsing
enhanced with contextual actions for phrase and sentence level tests. The parser
uses a meta-grammar of about 250 meta-rules for the description of the whole
Czech language with automatic grammar expansion to technical parsing rules.

In the following text, we focus on the issues of analysis of complex sentences
including direct discourse. We first discuss the formal definition of direct
and indirect speech and their logical consequences. Then we explain in detail
how the logical analysis in the synt parser works and how the syntactic and
logical representation of direct speech is obtained. In Section 4, we describe the
process of obtaining a corpus containing texts with direct speech, that was used
extensively for studying various aspects of this language phenomenon and for
evaluation of the parsing procedure.

2 Direct and Indirect Discourse

Direct and indirect forms of speech are related kinds of so called reported
speech, i.e. those utterances, where the speaker refers to another utterance or
utterances [13]. In the direct speech form, the (current) speaker uses an exact
quotation of the original speaker:

Waiter said: “Are you ready to order, sir?”
Mr Smith replied: “Yes. I’ll have the beef stew for starters and my wife
would like tomato soup.”

The corresponding indirect speech can look like:

The waiter asked, whether Mr Smith was ready to order.
He replied, that he would have the beef stew for starters and his wife
would like tomato soup.

The main difference in the logical consequences lies in the change of the actual
speaker positions in the reported clause. In case of the direct speech, the subject
position is occupied by the original speaker and all speech aspects are related
to him or her. On the other hand, the indirect form is completely related to the
reporting speaker and all original speech aspects are transformed to this new
subject. Especially, this results in higher usage of anaphoric expressions and
thus higher level of ambiguity in the indirect form of reported speech.

3 Analysis of Direct Speech

In this section, we first describe the implementation of the syntactic and logical
analysis in the synt parser and then concentrate on the additions specific to the
analysis of direct speech sentences.

Linguistic Logical Analysis of Direct Speech 53

3.1 The Synt Parser

Synt is a rule-based parser designed specifically for morphologically-rich free-
word-order languages and currently used mainly for Czech.1 It operates by
means of a modified head-driven chart analysis with a context-free backbone
interconnected with predefined in-programmed (so Turing complete) contex-
tual actions. The contextual actions are used to capture contextual phenom-
ena like grammatical agreement or advanced (possibly non-local) linguistic fea-
tures.

The underlying meta-rules are defined in the form of a meta-grammar
consisting of about 250 rules. Each rule can be attached a precedence level, a
list of actions and a derivation type. The precedence level makes it possible
to include mutually exclusive rules into the grammar. The backbone rules
are generated from a meta-rule during the process of automatic generation of
full grammar from the meta-grammar according to the derivation type (e.g.
permutation of all right-hand side non-terminals, enclitics checks, etc.).

The main result of the syntactic parsing procedure is an ordered set of
constituent parsing trees that is potentially very big but zipped within a shared
packed forest structure [14] provided with a fast algorithm for extracting n best
trees according to a combined ranking function.

Each of these trees can be used as an input to another set of contextual
actions that transform the tree to a logical formula in the TIL formalism, using
lexical type and valency information extracted from the VerbaLex verb valency
lexicon [15].

3.2 Syntactic Analysis of Direct Speech

A sentence with direct speech consists of the direct speech segment and a
reporting clause. We analyze the reporting clause as the head element of the
whole sentence, as the direct speech part often plays the role of subject or object
in the reporting clause.2 The structure of the direct speech part can be arbitrarily
complex – it can consist of one or more sentences, or of an incomplete sentence.
Therefore, we analyze the content of the direct speech by the direct_speech non-
terminal that can cover one, or more, clauses, and also expressions, where the
verb is not present.

Here comes the question, what should be actually considered a sentence in
the context of direct speech. One segment of direct speech with one respective
reporting clause can contain an arbitrary number of sentences, or even para-
graphs, so it is often not clear where the sentence boundary should be. There
are two straightforward approaches:

– Consider the whole pair, i.e. complex direct speech and the respective
reporting clause, as one sentence.

1 The synt grammar was also adapted for the Slovak and English languages, which are
subject of further development.

2 As in e.g.: “Go away,” he said.

54 Aleš Horák, Miloš Jakubíček, Vojtěch Kovář

– Split the direct speech to multiple sentences and consider only the sentence
closest to the reporting clause as its completion.

The first solution may seem more correct, because there is an immediate
relationship between the reporting clause and all parts of the direct speech;
however, it would lead to sentences consisting of thousands of words or even
more. Parsing such sentences would be computationally unfeasible, therefore
we do not consider it a good solution. Since all the respective relations are
extra-syntactic (anaphoric relations, relative tenses, . . .), we have developed a
combined solution – complex sentences can be contained in one direct speech
segment only in case the whole is not too long, otherwise, the direct speech is
split at sentence boundaries and the rest of the direct speech analysis is linked
to the reporting clause via a specific link used during the logical analysis phase.
Such solution is best realizable from the technical point of view and it is also
closest to what the currently available sentence segmenters do.

Having the sentence unit fixed, there are three possible combinations of
where the reporting clause can be placed, with regard to the direct speech
segment:

– The reporting clause comes before the direct speech segment – e.g. He asked:
“Would you bring me a beer?”

– The reporting clause comes after the direct speech segment – e.g. “Would
you bring me a beer?” he asked.

– The direct speech segment is divided into two parts, with the reporting
clause between them – e.g. “Would you,” he asked, “bring me a beer?”

Therefore, three basic rules are needed to address these three combinations:

clause → clause ’:’ direct_speech

clause → direct_speech clause

clause → direct_speech clause ’,’ direct_speech

As mentioned above, the direct speech segment then rewrites to a complex
sentence in quotes. In case the content of the direct speech cannot be analyzed
by the sentence non-terminal, we allow the direct speech to rewrite as an
arbitrary sequence of characters. These two analyses are mutually exclusive,
since the non_sentence rule of direct_speech is analysed on a higher (i.e.
less probable) rule level and is thus pruned away in the case where both
direct_speech rules match.

direct_speech → ’"’ sentence ’"’

9:direct_speech → ’"’ non_sentence ’"’

non_sentence → /[ˆ"]+/

One problem arises in the case where the direct speech is interrupted by the
reporting clause, but it forms one logical unit, e.g. in the sentence shown above:
“Would you,” he asked, “bring me a beer?”. For example, the manual for annotators
of the Prague Dependency Treebank [16] deals with this direct speech type by

Linguistic Logical Analysis of Direct Speech 55

using non-projective constituents.3 In the synt parser, the intra-clause position
of the reporting clause is analysed in a way similar to a parenthesis, i.e. a
part of the original clause, which can be inserted between any two sentence
constituents.

3.3 Logical Analysis of Direct Speech

The analysis of direct speech is not so loaded with the anaphora resolution
problem as the indirect speech form, however, we can encounter situations,
where the actual content of the direct speech clause is logically less related or
even completely irrelevant. Let us have a look at the following examples

Peter said: “Hand me the book.” (1)
Peter asked: “Hand me the ...” (2)
Peter thought: “The unicorn!” (3)
Peter screamed: “Aaaargh!” (4)

The example sentence (1) forms the standard reporting utterance with the two
parts of reporting clause and direct speech reported clause. However, all the
remaining examples fail on the syntactic level to be analysed as a (complete)
clause. The sentence (2) contains an incomplete (probably interrupted) reported
clause, sentence (3) shows, that Peter’s thought is related with and individual
object, and last, the sentence (4) represents an example of an object, which
cannot be analysed even on the morphological level and stays here for a non-
verbal sound.

The logical analysis of direct speech sentences in synt is related to the pro-
cedure of analysis of complex sentences, see [17]. The construction generated
by this procedure for the sentence (1) can look like:4

λw1λt2

[
Pt2 ,

[
Oncw1 , λw3λt4(∃x5)(∃c6)(∃i7)

(
[
Doesw3t4 , i7, [Perfw3 , x5]

]
∧

∧ [Peterw3t4 , i7] ∧ x5 = [say, c6]w3 ∧

∧ c6 =
0[

λw8λt9(∃x10)(∃i11)
([
Doesw8t9 , Ty, [Perfw8 , x10]

]
∧

∧ x10 = [hand_sb_st, Já, i11]w8 ∧ [bookw8t9 , i11]
)]

)]
,Anytime

]
. . . π

Peter/(oι)τω; say/((o(oπ)(oπ))ω*n); hand_sb_st/((o(oπ)(oπ))ω ιι);
book/(oι)τω;

(5)

3 See [16, Section 3.6.1]
4 The synt outputs are translated from the Czech language for the demonstration

purpose here in the paper.

56 Aleš Horák, Miloš Jakubíček, Vojtěch Kovář

Type Id Word/Phrase Reference
sentence sent1 Peter said: “Hand me the book.”
clause m1 Peter said
np m2 Peter
clause m3 _ Hand me the book
pron_pers_zero m_zerosubj1 _
pron_pers_strong m4 me m2
np m5 book

Fig. 1. The Saara system – anaphora resolution of the example sentence6 (“mN”
in the table refers to the term “markableN.”)

As we may see, the verbal object x5 in this construction is connected with an
argument of the higher-order type *n representing a (trivialized) construction
of order n. In this case the construction c6 generates a proposition (of type π, or
oτω), which keeps all the properties related to the meaning of Peter’s speech.

The corresponding anaphoric expressions that connect the reporting and
reported speech can be identified using the automatic anaphora resolution tool
Saara [18] that works in relation to the synt syntactic parser. An example of the
anaphoric links from Saara can be seen in Figure 1. This allows us to link the
variable Já from the construction (5) with the subject variable i7 there.

The appropriate type of the verb say is obtained during the logical analysis
of lexical items in synt by means of consulting the VerbaLex verb valency
lexicon [19]. The entry related to the verb říct (say) is presented in Figure 2.
Each verb frame participant is labelled with a two-level semantic role, which
can be used for specific information regarding the TIL type of each lexical item.
Currently, the verb arguments denoted by the 1st-level role COM7 are analysed
as the TIL higher-order type *n.

The analysis of the other three example sentences (2), (3) and (4) does not
contain two clauses, as the reported part fails to form a (whole) clause. In the
case of the sentence (3), the reported part could be analysed as a noun phrase
denoting and individual concept, but the sentences (2) and (4) even do not
provide any such characteristics. In such cases, the analysis does not analyse
the (incomplete) content of the direct speech part and the resulting construction
related the reporting verb only to the (individual) expression in the form of a

6 Again, the sentence words are translated from Czech in which the tools operate.
7 “something that is communicated by or to or between people or groups”

Linguistic Logical Analysis of Direct Speech 57

Fig. 2. VerbaLex entry related to the verb říct (say).

string of characters. For example, the sentence (4) thus receives the analysis:

λw1λt2

[
Pt2 ,

[
Oncw1 , λw3λt4(∃x5)(∃c6)(∃i7)

(
[
Doesw3t4 , i7, [Perfw3 , x5]

]
∧

∧ [Peterw3t4 , i7] ∧ x5 = [scream, c6]w3 ∧
∧ c6 = 00“Aaaargh”)]

,Anytime

]
. . . π

Peter/(oι)τω; scream/((o(oπ)(oπ))ω*n); “Aaaargh”/ι

(6)

Due to the “polymorphic” nature of the higher-order type *n the type of the
verbal object can accept the argument in any of the cases of the direct form.

4 Direct Speech Corpus

In order to study the issues of syntactic and logical representation a corpus of
direct speech of about 20,000 sentences has been created. It is obvious that the
definition of direct speech is quite broad and allows speculative interpretations

58 Aleš Horák, Miloš Jakubíček, Vojtěch Kovář

as to what should be considered as direct speech. To be able to build the corpus
automatically we therefore restrained ourselves only to direct speech which is
introduced and finished by quotes. We used the czTenTen corpus from which
we selected candidate sentences using the Corpus Query Language (CQL [20]).

Obviously, the formulation of the CQL query was subject to a trade off
between precision and recall. After numerous trials following query was
concluded:

<s/> containing

(<s>

[word!="\""]* [k!="k1"] "\"" [word!="\""]+

[k="k5"] [word!="\""]+ "\"" [word!="\""]*

</s>)

The resulting corpus was then used as a testbed for the study of syntactic and
logical properties of the direct speech form in common texts.

5 Conclusions

We have described an efficient conversion of Czech sentences with direct
speech into logical formulae in the formalism of Transparent Intensional Logic
(TIL), as a part of the Normal Translation Algorithm project. We have described
the parser used, the process of syntactic analysis and creation of the logical
formulae from the constituent syntactic trees. We have also described a corpus
of Czech direct speech which has been newly created for purposes of studying
the phenomenon and for evaluation.

The speed and the precision of the whole process is sufficient and promises
its future usage in automatic reasoning and intelligent question answering. In
the future, we will mainly concentrate on exploiting these results in real-word
applications, which mainly means integrating the information gained from
logical analysis into the complex pipeline of linguistic processing, including
anaphora resolution or inter-sentence relationship analysis.

Acknowledgements

This work has been partly supported by the Ministry of Education of CR within
the LINDAT-Clarin project LM2010013, by EC FP7 project ICT-248307 and by
the Czech Science Foundation under the project P401/10/0792.

References

1. Matsuzaki, T., Tsujii, J.: Comparative parser performance analysis across grammar
frameworks through automatic tree conversion using synchronous grammars. In:
Proceedings of the 22nd International Conference on Computational Linguistics.
(2008)

Linguistic Logical Analysis of Direct Speech 59

2. Specia, L., Jauhar, S., Mihalcea, R.: Semeval-2012 task 1: English lexical simplifi-
cation. In: Proceedings of the 6th International Workshop on Semantic Evaluation
(SemEval 2012), Montreal, Canada. (2012)

3. d’Amato, C., Fanizzi, N., Fazzinga, B., Gottlob, G., Lukasiewicz, T.: Ontology-
based semantic search on the web and its combination with the power of inductive
reasoning. Annals of Mathematics and Artificial Intelligence (2011) 1–39

4. Hoxha, J., Junghans, M., Agarwal, S.: Enabling semantic analysis of user browsing
patterns in the web of data. arXiv preprint arXiv:1204.2713 (2012)

5. Christensen, J., Soderland, S., Etzioni, O., et al.: An analysis of open information
extraction based on semantic role labeling. In: Proceedings of the sixth international
conference on Knowledge capture, ACM (2011) 113–120

6. Efrati, A.: With semantic search, google eyes competitors. The Wall Street Journal
(March 15, 2012)

7. Duží, M., Jespersen, B., Materna, P.: Procedural Semantics for Hyperintensional
Logic. Foundations and Applications of Transparent Intensional Logic. Volume 17
of Logic, Epistemology and the Unity of Science. Springer, Berlin (2010)

8. Tichý, P.: The Foundations of Frege’s Logic. de Gruyter, Berlin, New York (1988)
9. Tichý, P.: Collected Papers in Logic and Philosophy. Prague: Filosofia, Czech

Academy of Sciences, and Dunedin: University of Otago Press (2004)
10. Horák, A.: The Normal Translation Algorithm in Transparent Intensional Logic for

Czech. PhD thesis, Masaryk University, Brno (2002)
11. Horák, A.: Computer Processing of Czech Syntax and Semantics. Librix.eu, Brno,

Czech Republic (2008)
12. Horák, A., Kadlec, V.: New Meta-grammar Constructs in Czech Language Parser

synt. In: Lecture Notes in Artificial Intelligence, Proceedings of Text, Speech and
Dialogue 2005, Karlovy Vary, Czech Republic, Springer-Verlag (2005) 85–92

13. Coulmas, F.: Direct and indirect speech. Volume 31. De Gruyter Mouton (1986)
14. Kadlec, V.: Syntactic analysis of natural languages based on context-free grammar

backbone. PhD thesis, Masaryk University (2008)
15. Horák, A., Pala, K.: Building a large lexicon of complex valency frames. In: Proceed-

ings of the FRAME 2007: Building Frame Semantics Resources for Scandinavian and
Baltic Languages, Lund University, Sweden, Tartu, Estonia (2007) 31–38

16. Hajič, J., Panevová, J., Buráňová, E., Urešová, Z., Štěpánek, J., Pajas, P., Kárník, J.:
Anotace na analytické rovině – Návod pro anotátory (2005)
http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/cz/a-layer.

17. Horák, A., Jakubíček, M., Kovář, V.: Analyzing time-related clauses in transparent
intensional logic. In: Proceedings of Recent Advances in Slavonic Natural Language
Processing 2011, Brno, Czech Republlic, Masaryk University (2011) 3–9

18. Němčík, V.: The Saara Framework: An Anaphora Resolution System for Czech.
In: Proceedings of Recent Advances in Slavonic Natural Language Processing 2009,
Brno, Czech Republlic, Masaryk University (2009) 49–54

19. Hlaváčková, D., Horák, A., Kadlec, V.: Exploitation of the VerbaLex Verb Valency
Lexicon in the Syntactic Analysis of Czech. In: Proceedings of Text, Speech and
Dialogue 2006, Brno, Czech Republic, Springer-Verlag (2006) 79–85

20. Jakubíček, M., Rychlý, P., Kilgarriff, A., McCarthy, D.: Fast Syntactic Searching in
Very Large Corpora for Many Languages. In: PACLIC 24 Proceedings of the 24th
Pacific Asia Conference on Language, Information and Computation, Tokyo (2010)
741–747

http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/cz/a-layer

Building Evaluation Dataset for Textual Entailment
in Czech

Zuzana Nevěřilová

NLP Centre, Faculty of Informatics,
Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic

xpopelk@fi.muni.cz

Abstract. Recognizing textual entailment (RTE) is a subfield of natural
language processing (NLP). Currently several RTE systems exist in which
some of the subtasks are language independent but some are not. More-
over, large datasets for evaluation are prepared almost exclusively for En-
glish language.
In this paper we describe methods for obtaining test dataset for RTE
in Czech. We have used methods for extracting facts from texts based
on corpus templates as well as syntactic parser. Moreover, we have
used reading comprehension tests for children and students. The main
contribution of this article is the classification of “difficulty levels” for
particular RTE questions.

Key words: textual entailment

1 Introduction

Automatic reasoning systems are currently a promising application of Natural
Language Processing (NLP). Since automatic natural language understanding
(NLU) is a topic difficult to grasp and formalize scholars try to resolve
sub-problems of it. Hence recognizing textual entailment (RTE) is a good
application of NLU methods.

Basically RTE solves a yes/no question: whether a text T entails a hypothe-
sis H. In most cases H is a sentence a T is a coherent text – a “story”. T entails
H if the meaning of H, as interpreted in the context of T, can be deduced from
the meaning of T [1]. In this context deduction is not equal to logical deduction
and has to be understood in a broader context. It is considered that systems
with high precision on deciding the RTE question “understand” a text in nat-
ural language. Apart from being a good evaluation measure RTE can aim for
several applications such as intelligent searching or automatic summarization.

However, large resources for testing RTE systems are needed. In this paper
we describe the process of building a gold-standard for evaluation of a RTE
system. Currently a RTE system is being developed and its preliminary results
were promising. However, we cannot evaluate further improvements if have
no testing data.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 61–66, 2012. c○ Tribun EU 2012

mailto:xpopelk@fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

62 Zuzana Nevěřilová

In section 2 we describe the state-of-the-art both in developing RTE systems
and creating test data sets. Section 3 presents several methods for creating test
data sets from corpus and other resources as well. We present and discuss the
“difficulty levels” of RTE and their evaluation.

2 State-of-the-art

Recognizing textual entailment represents an important domain of research.
Since 2004 RTE Pascal challenges started with manually annotated datasets of
texts and hypotheses (H-T pairs) that covered seven different tasks:

– information retrieval
– comparable documents
– reading comprehension
– question answering
– information extraction
– machine translation
– paraphrase acquisition

In each of the subsets the annotators either generated hypotheses or iden-
tified H-T pairs from texts. Afterwards, annotators decided whether given text
entailed the hypothesis or not. Thus the datasets contain both positive and neg-
ative examples. Moreover annotators were asked to replace anaphora by their
appropriate references so that the RTE task would not concern anaphora reso-
lution [3].

Pascal Challenges took place from 2004 to present time (last challenge
was RTE-7 in 2011) and the datasets are available. The data is stored in an
XML format describing pairs and their sub-elements: text and hypothesis. We
adopted this format for our new resource of Czech H-T pairs.

Recent RTE systems use different techniques how to decide whether T
entails H. Apart from the ad-hoc and shallow approaches the sound approaches
(e.g. [11]) use

– tree transformation operations that generate the hypothesis from the given
text

– knowledge based operations

Tree transformation operations concern computing tree edit distance (inser-
tion, deletion, substitution) as well as rules for entailment and contradiction.
For example replacing a token (word or word expression in the parse tree of
the sentence) by its antonym leads (in most cases) in contradiction.

Knowledge based operations concern generalization using a knowledge
base (e.g. WordNet [5] or dbPedia [9]) or antonymy processing. Missing
knowledge is considered to be a bottleneck of RTE.

Building Evaluation Dataset for Textual Entailment in Czech 63

Representants of working systems are: BIUTEE1, EDITS2, VENSES3 or
Nutcracker4.

3 Collection H-T pairs

RTE applications use several methods for automated entailment judgment. We
have to reflect this fact when preparing RTE datasets. We also wanted to keep
the information about extraction of the H-T pairs as well as the “difficulty
level” of the entailment. The latter is not easy to obtain. However, we propose
a classification of the pairs in the following subsection.

3.1 Reading comprehension tests for children/adults

We have analyzed reading comprehension tests for children and secondary
school students. The classification reflects common reading comprehension
problems w.r.t. reader’s age.

– subsequence – the easiest entailment, most often it is a true entailment
– synonyms – replace a word in H by its synonym, obtain H′ and then H′ ∈ T,

true entailment
– siblings – a word wh in H is a sibling of a word wt in T (wh and wt

have common (direct) hypernym), but wh and wt are not synonyms, false
entailment

– specification – a word wh in H is a hyponym of a word wt in T, false
entailment

– syntactic rearrangement – H is a reformulation of a sentence in T, e.g.
active–passive transformation or subordinate clause–object transformation

– interchanged arguments – all words from H are present in a sentence from
T but their order or syntactic arrangement is different, false entailment

– qualifiers – the meaning of H is modified by a qualifier, judgment or by
hedging

– anaphora – H is a paraphrase of a sentence s in T, but s contains anaphora
and H contains reference, entailment value depends on anaphora resolution

– other – the meaning of H is not present in the context of T, other knowledge
(encyclopedic, mathematical etc.) is needed or H is off-topic (and then the
entailment is negative)

We have started with tests for 7-years-old children [10]. So far we have col-
lected 12 documents with tests. We did a classification on 34 H-T pairs. After-
wards we have classified 24 H-T pairs extracted from secondary school leav-
ing exam. Table 3.1 shows classification results. In tests for 7-years-old children

1 http://u.cs.biu.ac.il/~nlp/downloads/biutee/protected-biutee.html
2 http://edits.fbk.eu/
3 http://project.cgm.unive.it/venses.html
4 http://svn.ask.it.usyd.edu.au/trac/candc/wiki/nutcracker

http://u.cs.biu.ac.il/~nlp/downloads/biutee/protected-biutee.html
http://edits.fbk.eu/
http://project.cgm.unive.it/venses.html
http://svn.ask.it.usyd.edu.au/trac/candc/wiki/nutcracker

64 Zuzana Nevěřilová

Table 1. Classification of reading comprehension tests. Question types that are
frequent in tests for 7-years-old children (left column) are expected to be easier
to solve than questions frequent in tests for 18-years-old students.

question type 7-years 18-years

subsequence 20 % 0 %
synonyms 17 % 12 %
siblings 35 % 8 %
specification 2 % 4 %
syntactic rearrangement 5 % 50 %
interchanged arguments 5 % 3 %
qualifiers 0 % 17 %
anaphora 0 % 4 %
off-topic 16 % 21 %

each question is in one class, in final exam test several techniques are used at the
same time (e.g. syntactic rearrangement together with hedging). Therefore the
sum of the rightmost column is greater than 100 %. The classification was done
by one annotator since it is a preliminary phase of the dataset development.

3.2 Corpus patterns

While observing questions in reading comprehension tests we have proposed
several templates for extracting facts from corpora. Some parts of the templates
are language independent while other are language dependent. We have used
Corpus Query Language (CQL) in The Sketch Engine corpus tool [6]. This task
is inspired by information extraction applications.

We were working with the Czech morphologically annotated and disam-
biguated corpus czes that contains 465,102,710 tokens5.

Enumeration We have extracted nouns and adjectives following a noun in
accusative with the column sign and delimited by commas and conjunctions
a, nebo, ani (and, or, neither–nor). The hypothesis is then built rearranging the
enumeration items, e.g. for a text “Každý objekt obsahuje tři základní datové
komponenty: data, metody a atributy.” (Each object contains three basic data
components: data, methods and attributes.) we obtain three hypotheses such as
“Metody jsou komponenty objektu.” (Methods are components of the object.).
This method extracted 738 hypotheses.

Passive We have extracted sentences with the verb to be, a passive verb
and noun in instrumental. This is a typical passive construction in Czech
and it is relatively easy to transform such sentences to active. We have

5 2012-06-21 size

Building Evaluation Dataset for Textual Entailment in Czech 65

obtained hypotheses such as “Lesy obklopují obec” (Forests surrond the
village) from passive constructions such as “Obec je obklopena lesy.” (The
village is surrounded by forests). This method extracted 12.573 hypotheses.

Aliases We have extracted sentences containing “also known as”. The hypoth-
esis is created by stating that the alias is other name for an object, e.g. “Václava
Zapletalová, jinak zvaná Wendy” (Vaclava Zapletalova, also known as Wendy)
resulted to the hypothesis “Václavě Zapletalové se říká Wendy” (Wendy is a
different name for Vaclava Zapletalova). This method extracted 26 hypotheses.

For sentence generation we used a system for Czech noun phrases declen-
sion [8]. This system is built upon the morphological analyser/generator majka.

In the last stage we are planning to use the tool efa for fact extraction [2].
It is based on syntactic parser SET [7] but moreover modules for recognizing
information about time, location and manner are implemented.

3.3 Annotation

All these methods are used to extract H-T pairs from Czech texts. We plan
to annotate each pair at least by two annotators independently. Moreover,
in secondary school final exams correct answers are available. We expect
high inter-annotator agreement in case of 7-years-old children and low inter-
annotator agreement in case of secondary school final exam. In other methods
we expect high coverage and high inter-annotator agreement since the methods
are quite straightforward. According to [4] we plan to compute inter-annotator
agreement. However, we plan to exclude H-T pairs where annotators will not
agree on. The aim is to build a dataset with clear distinction what is a valid
entailment and what is not.

4 Conclusion and Future Work

We have presented building an evaluation dataset for a system for recognizing
textual entailment. We propose several resources of H-T pairs: reading compre-
hension tests, corpus querying using templates and fact extraction software. We
have also presented an approach for judging the difficulty level of particular H-
T pairs.

Future work concerns retrieval of more data from corpus. We will observe
reading comprehension tests a create more patterns for paraphrasing sentences
extracted from corpus.

In future we have to annotate the data by multiple annotators and to
evaluate the inter-annotator agreement.

Acknowledgments

This work has been partly supported by the Czech Science Foundation under
the project P401/10/0792 and by the Ministry of Education of CR within the
LINDAT-Clarin project LM2010013.

66 Zuzana Nevěřilová

References

1. Akhmatova, E.: Textual entailment resolution via atomic propositions. In:
Proceedings of the PASCAL Challenges Workshop on Recognising Textual
Entailment (April 2005)

2. Baisa, V., Kovář, V.: Information extraction for czech based on syntactic analysis. In:
Vetulani, Z. (ed.) Human Language Technologies as a Challenge for Computer
Science and Linguistics, Proceedings of 5th Language and Technology Conference.
pp. 466–470 (2011)

3. Challenges, P.: Recognising textual entailment challenge. online at
http://pascallin.ecs.soton.ac.uk/

4. Dagan, I., Dolan, B., Magnini, B., Roth, D.: Recognizing textual entailment:
Rational, evaluation and approaches. Natural Language Engineering 15(Special
Issue 04), i–xvii (2009), http://dx.doi.org/10.1017/S1351324909990209

5. Fellbaum, C.: WordNet: An Electronic Lexical Database (Language, Speech, and
Communication). The MIT Press (May 1998), published: Hardcover

6. Kilgarriff, A., Rychlý, P., Smrž, P., Tugwell, D.: The sketch engine. In: Proceedings
of the Eleventh EURALEX International Congress. p. 105–116 (2004),
http://www.fit.vutbr.cz/research/view_pub.php?id=7703

7. Kovář, V., Horák, A., Jakubíček, M.: Syntactic analysis using finite patterns: A new
parsing system for czech. In: Human Language Technology. Challenges for
Computer Science and Linguistics: 4th Language and Technology Conference, LTC
2009, Poznan, Poland, November 6-8, 2009. p. 161 (2011)

8. Neverilová, Z.: Declension of czech noun phrases. In: Actes du 31e Colloque
International sur le Lexique et la Grammaire. pp. 134–138. České Budějovice (2012)

9. Orlandi, F., Passant, A.: Modelling provenance of DBpedia resources using
wikipedia contributions. Web Semantics: Science, Services and Agents on the
World Wide Web 9(2), 149 – 164 (2011),
http://www.sciencedirect.com/science/article/pii/S1570826811000175,
<ce:title>Provenance in the Semantic Web</ce:title>

10. Střední odborná škola Otrokovice, s.s.v.a.z.p.d.v.p.p.: Pracovní listy k nácviku
porozumění čtenému textu a nápravě čtení.
http://www.zkola.cz/zkedu/pedagogictipracovnici/

kabinetpro1stupenzsamaterskeskoly/metodickematerialyvyukoveprogramy/

pracovnilistykporozumenitextuanapravecteni/default.aspx (2003),
11. Stern, A., Dagan, I.: A confidence model for syntactically-motivated entailment

proofs. In: Proceedings of the International Conference Recent Advances in Natural
Language Processing 2011. pp. 455–462. RANLP 2011 Organising Committee,
Hissar, Bulgaria (September 2011), http://www.aclweb.org/anthology/R11-1063

http://pascallin.ecs.soton.ac.uk/
http://dx.doi.org/10.1017/S1351324909990209
http://www.fit.vutbr.cz/research/view_pub.php?id=7703
http://www.sciencedirect.com/science/article/pii/S1570826811000175
http://www.zkola.cz/zkedu/pedagogictipracovnici/kabinetpro1stupenzsamaterskeskoly/metodickematerialyvyukoveprogramy/pracovnilistykporozumenitextuanapravecteni/default.aspx
http://www.zkola.cz/zkedu/pedagogictipracovnici/kabinetpro1stupenzsamaterskeskoly/metodickematerialyvyukoveprogramy/pracovnilistykporozumenitextuanapravecteni/default.aspx
http://www.zkola.cz/zkedu/pedagogictipracovnici/kabinetpro1stupenzsamaterskeskoly/metodickematerialyvyukoveprogramy/pracovnilistykporozumenitextuanapravecteni/default.aspx
http://www.aclweb.org/anthology/R11-1063

Part III

Text Corpora and Tools

Detecting Spam in Web Corpora

Vít Baisa, Vít Suchomel

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

{xbaisa, xsuchom2}@fi.muni.cz

Abstract. To increase the search result rank of a website, many fake
websites full of generated or semigenerated texts have been made in last
years. Since we do not want this garbage in our text corpora, this is a
becoming problem. This paper describes generated texts observed in the
recently crawled web corpora and proposes a new way to detect such
unwanted contents. The main idea of the presented approach is based on
comparing frequencies of n-grams of words from the potentially forged
texts with n-grams of words from a trusted corpus. As a source of spam
text, fake webpages concerning loans from an English web corpus as an
example of data aimed to fool search engines were used. The results show
this approach is able to detect properly certain kind of forged texts with
accuracy reaching almost 70 %.

Key words: web corpora, spam detection

1 Introduction

Web spamming has become a well know problem on the Internet. Spammed
web pages contain hyperlinks, nonsense or very low quality texts in order to
skew search engine results. The aim is to bring Internet users’ attention to these
in fact irrelevant pages. Seen through the eyes of an Internet browsing person,
web spamming results in unwanted or unrelated content.

Another problem caused by web spam is distortion of frequency of words in
collections of texts gathered from the Internet. This research is aimed at propos-
ing a new method for detecting such unwanted spam contents. Comparing re-
cently created web corpora for English, we observe more spammed data in a
more recent corpus.

For example, word viagra is approximately hundred times more frequent
in a web corpus from 2012 than in its predecessor from 2008. EnTenTen12,
the focus corpus, was gathered from the web in May 2012 and cleaned
using boilerplate removal and 7-gram based deduplication algorithms [1].
Comparable cleaning techniques were applied to the older corpus, therefore
the cleaning procedure was unable to deal with increased presence of the word
viagra.

Tables 1 and 2 show lemmas of words which are significantly more frequent
in the most recent web corpus than in older web corpora. Looking at the top

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 69–76, 2012. c○ Tribun EU 2012

mailto:\protect \T1\textbraceleft xbaisa, xsuchom2\protect \T1\textbraceright @fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

70 Vít Baisa, Vít Suchomel

lemma 2012 2008 RFR
1 loan 360.1 51.7 6.97
2 online 462.4 119.2 3.88
3 your 4194.4 1660.2 2.53
4 insurance 263.1 56.8 4.63
5 credit 321.7 119.9 2.68
6 buy 421.3 175.7 2.40
7 mortgage 132.4 22.9 5.78
8 product 502.6 219.6 2.29
9 brand 164.3 41.8 3.93
10 website 261.9 94.5 2.77
. . .
21 debt 150.9 48.5 3.11

Table 1. Keywords from focus corpus enTenTen12 (2012), reference corpus
enTenTen08 (2008).

lemma 2012 2008 RFR
1 loan 360.1 65.1 5.53
7 credit 321.7 106.3 3.03
20 mortgage 132.4 32.3 4.10
26 debt 150.9 46.7 3.23
112 insurance 263.1 157.1 1.67

Table 2. Keywords from focus corpus enTenTen12 (2012), reference corpus
ukWaC (1996).

items, there is a suspiciously high amount of words from domain of money:
loan, insurance, credit, mortgage, debt, etc. RFR stands for relative frequency
ratio between columns 2008 and 2012. The keywords extraction [2] function of
SketchEngine was used. There are frequencies per million (FPM) in appropriate
corpora in columns 2012 and 2008. The keywords are sorted by keyness rank
which is order of a lemma in the comparison according to keyness score

FPM in focus corpus + 100
FPM in reference corpus + 100

.

Authors of [3] also claim the amount of web spam increased dramatically
and define several types of spam techniques. This work is interested in the
following types:

– dumping of a large number of unrelated terms,
– weaving of spam terms into copied contents,
– phrase stitching (gluing together sentences or phrases from different

sources).

Cleaning procedures applied to enTenTen12 were not designed to remove
that type of spam, therefore the aim of this work is to detect such spam texts,

Detecting Spam in Web Corpora 71

especially phrase stitching. Other spam categories can be dealt with boilerplate
removal tools (e.g. pages containing only hyperlinks) or deduplication tools
(e.g. pages copying whole paragraphs from other sources).

Another big issue is a rapid growth of content farms (see the second item
in Table 3) – low quality articles promoting goods, services or webpages also
made just to increase a page rank. Although being sparsely informative and
much repetitive, such text is syntactically and sematically correct. That is why
we do not intend to remove it from text corpora and this work does not aim to
detect such kind of web content.

2 Sources of spam data

For the purpose of evaluating our method, we selected two sources of gener-
ated data: web documents about loans and fake scientific articles. The data was
obtained in November 2012 from the web. Boilerplate removal [1] was applied.

2.1 Recent web corpus

Since there is a whole group of loan (and generally money) related words
among the top keywords in the comparison in Tables 1 and 2, we chose to study
documents containing word loan in enTenTen12. 200 documents were randomly
chosen and the source web pages displayed in a browser for examination.
However, only 92 pages were successfuly downloaded – this work was done
6 months after crawling the pages, many of them were not found or contained
a different text.

Table 3 shows classification of web pages in the collection. We classified
44.5 % of documents not suitable for a text corpus as a spam. We selected 406
paragraphs from random documents and evaluated them once again, since
some paragraphs in spam documents were not spam and vice versa. Finally,
199 (49 %) spam and 207 (51 %) not spam paragraphs were used in further
experiments.

text category class % doc
nice text OK 37.0 %
low quality text (possibly a content farm) OK 18.5 %
fluency slightly broken (sentence or paragraph stitching) spam 9.8 %
fluency broken (sentence or phrase stitching) spam 13.0 %
not fluent (triplets of words stitching) spam 14.1 %
nice text, unrelated words (spam terms weaving) spam 7.6 %

Table 3. Classification of texts from the collection of 92 web documents
containing word loan. Texts not containing fluent paragraphs were marked as
spam.

72 Vít Baisa, Vít Suchomel

3 All n-grams approach to detect generated texts

N-grams are the most common resource for statistical language modeling.
Language models are used in many areas, mainly in speech analysis and in
machine translation. In the latter, a language model is responsible for a fluent
translation.

It was shown that language models assign more probability to a fluent text
than to a random sequence of words. In well-known evaluation method for
quality of machine translation BLEU [4], n-grams (where n is from 1 to 4) are
used for measuring fluency of a candidate sentence and this method correlates
reasonably well with human evaluations.

Usually, n-grams with n up to 4 are used. It means that higher-order n-grams
are not taken into account. There are several reasons why not to use higher-
order n-grams: slower performance, higher hardware requirements and mainly
sparse data.

In our method, we suppose that a fluent text can be achieved by using a
language model as in machine translation. When generating non-sense text, a
language model relies on n-grams up to some n. Let us suppose now n = 2.
Since the model has information about bigram counts (and probabilities) but
knows nothing about trigrams, we might recognize this fact simply by checking
frequencies of trigrams from the generated text taken from a reference corpus.
Generally, if a model used n-grams, we could always check n+1-grams.

In other words, we suppose that n-grams of an order higher than an order
used in a model will have much lower frequencies since the model simply does
not know about them. Using a trigram model, generated quadrigrams will be
more or less random.

3.1 Frequencies of all n-grams in a corpus

Our method does not use standard probabilities as in usual language models.
We use simple frequencies of all n-grams of all orders. For a given sentence, we
check all unigrams, bigrams, trigrams, ... n-grams where n is sentence length.

To be able to do that, we need a reference corpora (we used British National
Corpus, BNC) and a procedure which quickly gets counts of all possible
n-grams. There are O(m2) of all possible n-grams in corpus with m word
positions. We used algorithm described in [5], which produces these counts
in O(n) time.

The algorithm uses suffix array [6], longest common prefix array [7] and fact
that majority of all n-grams are unique in a corpus. In Table 4 you can see a part
of suffix array built from the BNC.

Since n-grams in the suffix array are sorted, we can observe, that there are
at least six bigrams ‘distinguish at’, exactly three trigrams ‘distinguish at least’
and only one quadrigram ‘distinguish at least between’, ‘distinguish at least
four’ etc. All n-grams starting with ‘distinguish at least four’ has frequency 1
and the algorithm exploits this observation.

Detecting Spam in Web Corpora 73

distinguish at all between the personal ...
distinguish at least between the meaning ...
distinguish at least four sources in ...
distinguish at least three cases : ...
distinguish at once from the destruction ...
distinguish at the outset between the ...

Table 4. Part of suffix array built form BNC, n-grams starting with distinguish.

3.2 Frequency-drop between n-gram orders

For the classification we needed a list of features to be able to use a machine
learning method. For that purpose we used frequency-drop between various
levels of n-grams in a sentence. The first level (word counts) is compared with
the second level (bigram counts) and so on. Counts are summed up for a level
and these sums are simply divided between levels. A frequency-drop is ratio
between a sum of n-grams frequencies from a level a and a sum of n-gram
frequencies from a level a + 1. We suppose that the more fluent and natural a
text is the smaller frequency-drops should be between its appropriate n-gram
levels and that a significantly bigger frequency-drop is located between levels
which correspond to an order of a language model used for generating the text.

On Figure 1 you can see an explaining diagram. Numbers bellow the words
are frequencies of various n-grams. Frequencies on the first line with numbers
correspond to unigrams. The second line contains frequencies for bigrams etc.
On the right side, there are three frequency-drop numbers which stand for
ratios between sums of appropriate n-grams levels.

Since the text is generated and it is not fluent English text, frequency-drops
on various levels are very low (less than 0.01).

Think about edge does it include is certainly the most significant treatment to be had .
1k 188k 6k

271

61k 821k 15k 972k 15k 5M 87k 11k 2M 648k 418k 4M11k

0 0 2k 17 0 1k 539 29k 757 0 204 187k 389 1k

0 0 0 6 0 0 116 49 461 0 0 22 206 41
0 0 0 0 0 160 360 0 0 0 0

0.0059
0.0633
0.0086}n-

gr
am

fr
eq
ue
nc
ie
s drop

Fig. 1. Frequency-drop on 4 levels for apparently generated sentence.

Some low frequent words as e.g. proper names may introduce substantial
frequency-drops between n-gram levels, but in one variant of our method we
use average frequency-drops values, which should solve the problem especially
for longer sentences.

On the contrary, some high frequent words may introduce the same from
the other side, but this effect is weakened again by using an additional average
value.

74 Vít Baisa, Vít Suchomel

3.3 Classification

List of frequency-drops are vectors with values from 0 to 1. In our data
maximum frequency-drop level with non-zero sum was 7 (i.e. there was an 8-
gram with non-zero frequency). At first we used only frequency-drops from
non-zero levels, but then added another value: average frequency-drop for
all levels. In that case, accuracy was improved slightly. As another feature,
paragraph length (in sentences) was added which also slightly improved the
results.

For the classification we used both simple threshold tuning and Support
Vector Machine (SVM) [8] for machine learning.

In the first experiment on development data, two thresholds were com-
bined: frequency-drop between first two levels (0.015) and average frequency-
drop on all levels (0.025).

For the SVM we used the mentioned n-tuples with two additional values
– average frequency-drop and paragraph length. SVM automatically chose its
kernel-function to maximalize accuracy of the trained model.

4 Results

For evaluation of these methods we used standard metrics: precision, recall,
accuracy and f-score. In case of spam classification, it is usefull to express these
metrics using terms true positive (tp), true negative (tn), false positive (fp) and false
negative (fn). When a paragraph is annotated manually as ‘spam’ and classified
by one of our methods as ‘spam’, then it is true positive match. The other matches
are analogical. Standard metrics can be then expressed as follows.

precision =
tp

tp + fp

recall =
tp

tp + fn

accuracy =
tp + tn

tp + tn + fp + fn

f -score = 2 × precision × recall
precision + recall

In Table 5 you can see results for the two methods. BASE is baseline method:
classification of all paragraphs as ‘spam’. sDEV is the simple threshold method
run on development data, sTEST is the same method run on test data. In next
columns, the SVM method with various training vectors are listed. SVM used
n-tuples with up to 7 frequency-drop levels. SVMc used one more value for a
number of sentences in a paragraph, SVMa used one more value for average
frequency-drop and the last SVMc

a used the two additional values together.
We can see that the simple threshold method is only slightly better than the

baseline. So is the first SVM method using vector of frequency-drops for n-gram
levels. The best method is SVMc which gives almost 70 % accuracy.

Detecting Spam in Web Corpora 75

BASE sDEV sTEST SVM SVMc SVMa SVMc
a

precision 48.53 55.36 49.72 31.31 83.84 72.73 84.85
recall 100.0 97.03 90.91 50.00 63.36 64.29 62.22

f-score 65.35 70.50 64.29 38.51 72.17 68.25 71.79
accuracy 48.53 59.41 50.98 51.47 68.63 67.16 67.65

Table 5. Results for various evaluated methods.

5 Conclusions and future work

Processing of test data was done on vertical files. Development and test sets
have about 17,000 tokens respectively.

We classified spam on paragraph level. It might be more appropriate to
classify spam on sentence level since as was said, sometimes only a part of
a paragraph is generated and the rest is taken over from another web page.
Moreover the mentioned deduplication tool removes duplicates on paragraph
level so it can not solve the problem with sentences stitched together in a
paragraph.

The accuracy of these proposed methods can be decreased also by imperfect
training data. It was annotated manually by non-native speaker of English
which probably influenced quality of the annotation. For further research we
would like to use data annotated by more annotators and especially data
annotated by native speakers.

The process of getting frequency-drops on all possible n-gram levels is very
fast. After suffix array, longest commonest array and all n-gram frequencies are
prepared, we are able to process cca 2,000,000 tokens per minute on a computer
with 8 processors and 100 GB RAM. It allows us to process very large billion
corpora within hours or days. Standard language modeling methods (using
probabilities) would be much slower and thus unusable for big data.

In the future we would like to use n-grams extracted from larger corpora,
e.g. from mentioned ententen08. As a reference corpus we used BNC. We would
also like to try the method on bigger training and testing data for specific
domain of scientific texts. For that purpose we intend to use fake scientific
articles generated by Scigen1. As a counterpart to these fake articles, random
documents published in Computer Science section in arXiv2 could be used. For
that data set we would use a corpus containing scientific documents.

Spam and other garbage on the web is increasing problem nowadays and
we should try our best to be able to deal with it and filter it out. Without it,
methods for machine translation, speech analysis etc. would be badly affected
by low quality data used for building n-gram language models.

1 An Automatic Computer Science Paper Generator, http://pdos.csail.mit.edu/
scigen/

2 Open access to natural sciences e-prints, http://arxiv.org/list/cs/recent

http://pdos.csail.mit.edu/scigen/
http://pdos.csail.mit.edu/scigen/
http://arxiv.org/list/cs/recent

76 Vít Baisa, Vít Suchomel

6 Acknowledgement

This work has been partially supported by the Ministry of Education of CR
within the LINDAT-Clarin project LM2010013 and by EC FP7 project ICT-
248307.

References

1. Pomikálek, J.: Removing Boilerplate and Duplicate Content from Web Corpora. PhD
thesis, Masaryk University, Brno (2011)

2. Kilgarriff, A.: Getting to know your corpus, Springer (2012) 3–15
3. Gyongyi, Z., Garcia-Molina, H.: Web spam taxonomy. (2005)
4. Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic evaluation

of machine translation. In: Proceedings of the 40th annual meeting on association for
computational linguistics, Association for Computational Linguistics (2002) 311–318

5. Yamamoto, M., Church, K.: Using suffix arrays to compute term frequency and
document frequency for all substrings in a corpus. Computational Linguistics 27(1)
(2001) 1–30

6. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. siam
Journal on Computing 22(5) (1993) 935–948

7. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-
prefix computation in suffix arrays and its applications. In: Combinatorial Pattern
Matching, Springer (2006) 181–192

8. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural
processing letters 9(3) (1999) 293–300

Recent Czech Web Corpora

Vít Suchomel

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

xsuchom2@fi.muni.cz

Abstract. This article introduces the largest Czech text corpus for lan-
guage research – czTenTen12 with 5.4 billion tokens. A brief comparison
with other recent Czech corpora follows.

Key words: web corpora, Czech

1 Introduction

Algorithms in the field of natural language processing generally benefit from
large language models. Many words and phrases occur rarely, therefore there
is a need for very large text colletions to research behaviour of words. [1]
Furthermore, the quality of the data obtained from the web is also stressed. [2]
Language scientists are increasingly turning to the web as a source of language
data. [3] Nowadays, the web is the biggest, easily exploitable and the cheapest
source of text data.

We decided to support corpora based research of Czech language by
building a new Czech corpus from web documents. The aim was to apply
successful data cleaning tools and label the words with grammatical categories.

2 Building a new Czech web corpus

CzTenTen12 is a new Czech web corpus built in 2012 using data obtained from
the web in 2011. Several automatic cleaning and postprocessing techniques
were applied to the raw data to achieve a good quality corpus for language
research.

2.1 Crawling the web

We used web crawler SpiderLing1, our previous work [4], to gather the data
from the web. We started the crawl from 20000 seed URLs spanning over 8600
domains. The URLs were chosen using Corpus Factory [5], Czech Wikipedia
and partially from older web corpus czTenTen. The crawl was restricted to the
Czech national top level domain (.cz). 15 million documents of size 500 GB
were downloaded in 24 days.

1 http://nlp.fi.muni.cz/trac/spiderling

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 77–83, 2012. c○ Tribun EU 2012

mailto:xsuchom2@fi.muni.cz
http://nlp.fi.muni.cz/trac/spiderling
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

78 Vít Suchomel

2.2 Postprocessing and tagging

The crawler performed character encoding detection and converted the data to
UTF-8. The crawler detected language using character trigrams and filtered out
texts in other languages than the focus language. Extra care had to be taken
in case of Slovak which contains similar trigrams and unwanted texts may
pass the filter. We prepared a list of Czech words not present in Slovak and
a dual list of Slovak words not present in Czech. Using these lists, paragraphs
containing three times more unique Slovak words than unique Czech words
(0,4 %) or unique words mixed from both languages (6,4 %) were separated.

Boilerplate removal tool jusText2 was used to remove html markup, page
navigation, very short paragraphs and other useless web content. The data
was de-duplicated by removing exact and near duplicate paragraphs using tool
onion3. Paragraphs containing more than 50 % seen 7-grams were dropped.

Paragraphs containing only words without diacritical marks were tagged
for further use, e.g. when studying the informal language of the web.4 Parts
containing more than 20 % of words not recognized by morphological analyzer
Desamb were considered nonsense and removed from the corpus. The final size
of the corpus reaches 5.4 billion tokens (4.4 billion words).

Czech morphological analyzer Desamb [6,7] was used to tag the corpus.
The added information consists in the part of speech and other grammatical
categories (where applicable): gender, number, case, aspect, modality and
other.5

3 Comparison with other corpora

The following recent Czech corpora are used in the comparison:

– SYN 2010 . . . Czech national corpus – the SYN-series corpora up to 201067,
– czes2 (a web corpus from 2009),
– czTenTen (a web corpus from 2011),
– the Hector project corpus8 (Hector) [2].

3.1 Basic properties

According to [2], both SYN and Hector are deliberately balanced, e.g. the latter
consists of 450 millions of words from news and magazines, 1 billion of words

2 http://nlp.fi.muni.cz/projects/justext
3 http://nlp.fi.muni.cz/projects/onion
4 These texts come mostly from discussions or other informal websites (where poeople

do not bother writing proper accent marks).
5 Reference of full tagset: http://nlp.fi.muni.cz/projekty/ajka/tags.pdf
6 http://ucnk.ff.cuni.cz/english
7 Although the full corpus is not publicly available, a wordlist with frequencies was

enough to carry out measurements presented later on.
8 http://hector.ms.mff.cuni.cz

http://nlp.fi.muni.cz/projects/justext
http://nlp.fi.muni.cz/projects/onion
http://nlp.fi.muni.cz/projekty/ajka/tags.pdf
http://ucnk.ff.cuni.cz/english
http://hector.ms.mff.cuni.cz

Recent Czech Web Corpora 79

Table 1. Basic comparison of corpora. Only words consisting of letters are
accounted in the word count. Dictionary size is the number of unique words
with at least 5 occurrences. The the-score is the rank of word "the" in a list of
words sorted by frequency from the most frequent one. The lower the value,
the higher contamination by foreign words should be expected.

corpus word count [106] dictionary size [106] the-score
SYN2010 1300 1.61 7896
czes2 367 1.03 42
czTenTen 1652 2.42 1023
Hector 2650 2.81 1184
czTenTen12 4439 4.16 1223

Table 2. Corpus distance measured for each couple of corpora. The lower the
distance score, the more similar is the couple.

corpus czes czTenTen Hector czTenTen12
SYN2010 1.60 1.70 2.28 1.73
czes2 1.44 2.16 1.52
czTenTen 1.79 1.12
Hector 1.65

from blogs and 1.1 billion of words from discussions. The content of the new
corpus was not controlled and a deeper analysis of content remains for further
research.

Table 1 displays values of three metrics calculated for five corpora. We
observe czTenTen12 is the largest corpus with the largest dictionary. The the-score
is a very simple metric offering a basic idea about contamination of the corpus
by foreign (English) words. We observe czes2 is the most polluted corpus and
SYN2010 is the most clean corpus in this measurement.

3.2 Corpora similarity

Table 2 shows a corpus comparison cross-table. The distance score calculation is
based on relative corpus frequencies of 500 most frequent words in all corpora.
The full method is described in [8]. We observe czTenTen and czTenTen12 are
very close. That can be explained by similar way of obtaining and processing
the data and sharing a lot of documents. On the other hand, the balanced
corpora are more distant.

Comparison of keywords (also based on the relative corpus frequency) in
czTenTen12 most different from SYN2010 was published in [9]. We observe there
are more discussions and blogs (informal words, verbs in 1st or 2nd person,
pronouns, adverbs) and computer related words in the new unbalanced corpus.
Comparing czTenTen12 to Hector, we find the differrence in presence of informal
words too. Top czTenTen12 related words in this comparison are quite formal:
již, lze, oblasti, společnosti, zařízení, této, roce, zde, mohou, rámci, projektu, těchto,

80 Vít Suchomel

Fig. 1. Word sketch for word příst in czes2. A part of grammatical relations is
displayed. The number of hits of the word in the corpus is 5191.

systému. They could belong to some project notes or contracts. The key words
of the opposite direction are no, holky, jo, xD, D, blog, teda, taky, já, dneska, sem,
jdu, máš, which leads to conclusion Hector contains more blogs and discussions
(generally informal texts) than czTenTen12.

3.3 Word sketches – bigger is better

Figures 1 and 2 display word sketch for word příst in czes2 and czTenTen12
in SketchEngine9. As can be easily observed, the bigger corpus offers better
words in relations with the head word. E.g. (příst, blaho) in relation has_obj7
(which stands for a verb with a noun in instrumental case) is a quite common
collocation in Czech. That is well reflected in the sketch for czTenTen12 with 84
occurrences and the first place by saliency score in the relation table. However,
the smaller corpus offers only 4 instances of this collocation. Relation has_obj4
(which stands for a verb with a noun in accusative case) in czes2 is very poor,
while containing many well suiting words in the case of the bigger corpus: len,

9 http://sketchengine.co.uk/

http://sketchengine.co.uk/

Recent Czech Web Corpora 81

Fig. 2. Word sketch for word příst in czTenTen12. A part of grammatical relations
is displayed. The number of hits of the word in the corpus is 28276, that is 5
times more frequent than in the smaller corpus.

82 Vít Suchomel

příze, nit, nitka, pavučina.10 Furthermore, most of collocations with prepositions
in prepositional relations post_na, post_v, post_do and other are present just in
the word sketch of the bigger corpus: na kolovratu, na klíně, v náručí, do ouška, pod
kapotou, ostošest. We conclude a bigger corpus is much more useful for language
research based on collocations of words.

4 Conclusion and future work

This article introduced the largest Czech text corpus for language research. A
basic comparison with other contemporary Czech corpora was made. Example
work sketches were shown to support idea that bigger corpora are better.

The future plans for building web corpora of Slavonic languages include
gathering resources in Polish and Croatian. Another interesting research op-
portunity is studying semantic topics automatically extracted from documents
in the corpus. That would help us to know more about the content of the corpus
and consequently of the Czech web.

Acknowledgements

This work has been partially supported by the Ministry of Education of CR
within the LINDAT-Clarin project LM2010013, by the Ministry of the Interior
of CR within the project VF20102014003 and by the Czech Science Foundation
under the project P401/10/0792.

References

1. Pomikálek, J., Rychlý, P., Kilgarriff, A.: Scaling to billion-plus word corpora.
Advances in Computational Linguistics 41 (2009) 3–13

2. Spoustová, J., Spousta, M.: A high-quality web corpus of czech. In: Proceedings of the
Eight International Conference on Language Resources and Evaluation (LREC’12),
Istanbul, Turkey, European Language Resources Association (ELRA) (may 2012)

3. Kilgarriff, A., Grefenstette, G.: Introduction to the special issue on the web as corpus.
Computational linguistics 29(3) (2003) 333–347

4. Suchomel, V., Pomikálek, J.: Efficient web crawling for large text corpora. In:
Proceedings of the Seventh Web as Corpus Workshop, Lyon, France (2012)

5. Kilgarriff, A., Reddy, S., Pomikálek, J., Pvs, A.: A corpus factory for many languages.
Proceedings of the Eighth International Conference on Language Resources and
Evaluation (LREC’10, Malta) (2010)

6. Šmerk, P.: Unsupervised Learning of Rules for Morphological Disambiguation.
In: Lecture Notes in Artificial Intelligence 3206, Proceedings of Text, Speech and
Dialogue 2004, Berlin, Springer-Verlag (2004) 211–216

7. Jakubíček, M., Horák, A., Kovář, V.: Mining phrases from syntactic analysis. In:
Lecture Notes in Artificial Intelligence, Proceedings of Text, Speech and Dialogue
2009, Plzeň, Czech Republic, Springer-Verlag (2009) 124–130

10 Presence of other words in this relation is caused by tagging mistakes or by putting
them in a wrong relation.

Recent Czech Web Corpora 83

8. Kilgarriff, A.: Comparing corpora. International journal of corpus linguistics 6(1)
(2001) 97–133

9. Kilgarriff, A.: Getting to know your corpus. In: Text, Speech and Dialogue, Springer
(2012) 3–15

CzAccent – Simple Tool for Restoring Accents in
Czech Texts

Pavel Rychlý

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

pary@fi.muni.cz

Abstract. There are many Czech text written without any accents. The
paper describes a tool for fully automatic restoration of Czech accents.
The system is based on a simple approach of big lexicon. The resulting
accuracy of the system evaluated on large Czech corpora is quite high.
The system is in regular use by hundreds of users from around the whole
world.

Key words: diacritic restoration, Czech, CzAccent

1 Introduction

The written form of the Czech language uses the same 26 character as English
many of them with several different accents. The list of all accented characters
of Czech is in Table 1. In the early days of personal computers in 80s of the
last century and in the early days of mobile phones in the beginning of this
century, the devices was to prepared for easily writing of accented characters
and users wrote Czech texts without accents. Even today, there are people who
write some texts or all texts without accents.

For most people, reading Czech text without accents is harder than reading
correct texts. Many non-accented words are ambiguous, there are more than
one possible way how to add one or more accents to create different words. On
the other hand, all native speakers do not have problems with understanding
the non-accented text, they are able to add correct accents to words in a context.

Table 1. All accented characters in Czech.

á í t’ Á Í Ť
č ň ú Č Ň Ú
d’ ó ů Ď Ó Ů
é ř ý É Ř Ý
ě š ž Ě Š Ž

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 85–89, 2012. c○ Tribun EU 2012

mailto:pary@fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

86 Pavel Rychlý

Table 2. Relative frequency of accented characters in Czech texts compared to
respective non-accented ones.

character % in text character % in text
a 6.861 r 4.002
á 2.073 ř 1.129
c 2.543 s 4.617
č 0.962 š 0.779
d 3.659 t 5.583
d’ 0.024 t’ 0.043
e 7.996 u 3.165
é 1.077 ú 0.142
ě 1.424 ů 0.496
i 4.617 y 1.732
í 2.896 ý 0.855
n 6.517 z 2.020
ň 0.066 ž 0.972
o 8.146
ó 0.030

There was several attempts to build an automated tool for adding accents,
usually based on learning n-grams of characters. The presented system outper-
form all character based systems.

The structure of the pager is following: next section states the complexity
of the problem, then the CzAccent system is described in details. Next two
sections provide results of evaluation and usage options of the system.

2 Complexity of Restoring Czech Accents

Accented vowels are very common in Czech texts, many other accented
characters are very rare. The relative frequency of accented characters together
with respective non-accented variant are listed in Table 2.

We can see that most frequent accented characters á and í are also most fre-
quent accents compared to respective non-accented characters. The á character
occurs in 23 % of all a occurrences (accented or non-accented). The í character
occurs in almost 40 % of all i occurrences.

3 CzAccent method

The CzAccent system is based on a big lexicon. The the all words known to
the Czech morphology analyser Majka was looked in a big corpus. The most
frequent accented word from all possible accented words and also the original
non-accented word was selected and added to the CzAccent lexicon. In the

CzAccent – Simple Tool for Restoring Accents in Czech Texts 87

Fig. 1. CzAccent web interface.

result, there are millions of words which are stored in a very compact data
structure using a finite state automaton [1]. The final data file containing the
whole lexicon is very small, it has only 1.86 kB.

The CzAccent system processes any text in a straightforward way, it repeats
the following steps from the beginning to the end of an input.

1. read a word (sequence of alphabetical characters),
2. try to find the word in the lexicon,
3. if found print the accented variant,
4. else print original word,
5. copy any non-alphabetical characters from input to output.

Due to its simplicity, the system is very fast. It can process more than 4.7 MB
per second on moderate machine.

88 Pavel Rychlý

4 Evaluation

The system was evaluated on big Czech corpus CZES. CZES was built purely
from electronic sources by mostly automated scripts and systems. [2]
Texts in the CZES corpus come from three different sources:
1. automated harvesting of newspapers (either electronic version of paper

ones or electronic only), with annotation of publishing dates, authors and
domain; these information is usually hard to find automatically from other
sources;

2. customised processing of electronic versions of Czech books available
online; and

3. general crawling of the Web.

The whole corpus should contain Czech texts only. There are small parts
(paragraphs) in Slovak or English because they are parts of the Czech texts.
Some Czech newspapers regularly publish Slovak articles, but we have used an
automatic method to identify such articles and remove them from the corpus.

There was no restriction on the publication date of texts. There are both
latest articles from current newspapers and 80 year old books present in the
corpus.

The second corpus for evaluation was 1 million word corpus DESAM [3]. It
is manually annotated and that is the reason that it is also very clean.

The accuracy of the system on the CZES corpus is 92.9, the accuracy on
DESAM is 97.3. We can see that on cleaned texts the accuracy is very high.

5 Interface

The system is stable, it can be run in the form of a command line tool. An
example of usage is at Figure 2.

$ echo realny problem | czaccent

reálný problém

Fig. 2. An example of CzAccent command line tool usage.

There is also a public web interface at the following address: http://nlp.
fi.muni.cz/cz_accent/. It is in the form a simple page with one entry field. A
user can enter a Czech text without accents and the system provides accented
text. A screen-shot of the web interface is at Figure 1.

6 Conclusions

The system uses very simple method, but the resulting accuracy of the system
evaluated on very large Czech corpus is quite high. The system is in regular use
by hundreds of users from around the whole world.

http://nlp.fi.muni.cz/cz_accent/
http://nlp.fi.muni.cz/cz_accent/

CzAccent – Simple Tool for Restoring Accents in Czech Texts 89

Acknowledgements

This work has been partly supported by the Ministry of Education of CR within
the LINDAT-Clarin project LM2010013 and by EC FP7 project ICT-248307.

References

1. Daciuk, J.: Finite state tools for natural language processing. In: Proceedings of the
COLING 2000 workshop Using Toolsets and Architectures to Build NLP Systems,
Luxembourg. (2000)

2. Horák, A., Rychlý, P.: Discovering grammatical relations in czech sentences. (2009)
3. Pala, K., Rychlý, P., Smrž, P.: DESAM – Annotated Corpus for Czech. In: Proceedings

of SOFSEM ’97, Springer-Verlag (1997) 523–530

Towards 100M Morphologically Annotated Corpus
of Tajik

Gulshan Dovudov, Vít Suchomel, Pavel Šmerk

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
{xdovudov,xsuchom2,xsmerk}@fi.muni.cz

Abstract.
The paper presents a work in progress: building morphologically anno-
tated corpus of Tajik language of the size more than 100 million tokens.
The corpus is and will be by far the largest available computer corpus of
Tajik: even its current size is almost 85 million tokens. Because the avail-
able text sources are rather scarce, to achieve the goal also the texts of a
lower quality have to be included. This short paper briefly reviews the
current state of the corpus and analyzer, discusses problems with either
“normalization” or at least categorization of low quality texts and finally
also the perspectives for the nearest future.

Key words: web corpora, Tajik

1 Introduction

The Tajik language is a variant of the Persian language spoken mainly in
Tajikistan and also in some few other parts of Central Asia. Unlike closely
related Iranian Persian which uses Arabic script, Tajik is written in Cyrillic.

Since the Tajik language internet society (and consequently the potential
market) is rather small and Tajikistan itself is ranked among developing
countries, available tools and resources for computational processing of Tajik as
well as publication in the field are rather scarce. Availability of Tajik corpus data
does not seem to change during the last year: aside from our corpus, the biggest
freely available corpus is still the one within the Leipzig Corpora Collection
project [5] (ca. 100 000 sentences, 1.8 million words, huge amount of errors),
the biggest planned corpus is still the one prepared by the Tajik Academy of
Sciences (target size 10 million, no visible changes in the last year)1. For further
details and for information on other minor corpus projects see our previous
work [1].

In this paper we present our corpus of contemporary Tajik language of more
than 85 million tokens. After a brief review of its current state we will discuss
problems with low quality texts. Finally we will debate possible improvements
in the nearest future.

1
http://www.termcom.tj/index.php?menu=bases&page=index3&lang=eng (in Russian)

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 91–94, 2012. c○ Tribun EU 2012

mailto:\protect \T1\textbraceleft xdovudov,xsuchom2,xsmerk\protect \T1\textbraceright @fi.muni.cz
http://www.termcom.tj/index.php?menu=bases&page=index3&lang=eng
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

92 Gulshan Dovudov, Vít Suchomel, Pavel Šmerk

2 The Current State of the Corpus

Our corpus is built only from online sources (or, to be precise, only from sources
which were online at some time, as the accessibility of some data changes
rapidly). We use two different approaches to obtain the data. For the details
refer to our previous papers [1] and [2].

The main part of the corpus was collected by crawling several portals,
mostly news portals, in Tajik language.2 Each portal is processed separately
to get the maximum of relevant (meta)information, i.e. correct headings,
publication date, rubric etc. The data for the second part of the corpus was
obtained with SpiderLing, a general web crawler for text corpora [6], which
automatically walks through the internet and searches for texts of a particular
language. The crawling process started with 2570 seed URLs (from 475 distinct
domains) collected with Corpus Factory [3]. The obtained data was uniformely
tokenized and then deduplicated using Onion3 with moderately strict settings4.

The actual size of the corpus is 84,557,502 tokens and 70,665,499 words
i.e. tokens which contain only Cyrillic characters (the rest is punctuation,
numbers, Latin words etc.). The semi-automatically crawled part has 57,636,441
tokens, which means that the contribution of the automatically crawled part is
26,921,061 tokens. Our morphological analyzer recognizes 92.5 % of words (i.e.
of the above mentioned 70 million tokens).

The corpus is not freely available for a download at the moment, but
eventual interested researchers can access it through a very powerful corpus
manager the Sketch Engine5 [4].

2.1 Dealing with texts of lower quality

As was mentioned in the Introduction, Tajik uses Cyrillic script. Unfortunately,
the Tajik alphabet contains six letters which are missing in the probably most
widespread codepage in the post-Soviet world, i.e. cp1251. As there is or has
been almost no support for Tajik in Windows and also in other major OSs,
in many occasions people writing Tajik texts were not able to write proper
Tajik-specific characters and were about to use some replacements. The most
frequently used replacement sets can be seen in the table.6

Note that letters Љљ, Њњ, Її, and Ўў are shared by the Replacement sets
1 and 2, but except for Ўў the replacements have different meanings. Thus it
would not be correct to directly replace all these replacement characters, but

2 Paradoxically, the two largest Tajik news portals are not located in Tajikistan, but in
the Czech Republic (ozodi.org, Tajik version of Radio Free Europe/Radio Liberty) and
the United Kingdom (bbc.co.uk, Tajik version of BBC).

3
http://code.google.com/p/onion/

4 Paragraphs with more than 50 % of duplicate 7-tuples of words were removed.
5
http://ske.fi.muni.cz/open/

6 Note that Ѕѕ is not Latin S, but “Cyrillic Dze”, Ii is not Latin I, but “Cyrillic
Byelorussian-Ukrainian I” and the accents above К̀к̀Г̀г̀ should be acute, not grave
(probably wrong glyph in LATEXfont).

http://code.google.com/p/onion/
http://ske.fi.muni.cz/open/

Towards 100M Annotated Corpus of Tajik 93

Table 1. Replacement sets for Tajik.

Char RS1 RS2 RS3 RS4
Ғғ Г̀г̀ Љљ Uu Гг
Ӣӣ Її Њњ Bb Ии
Ҷҷ Љљ Її Xx Чч
Ҳҳ Њњ Ii {[Хх
Ққ К̀к̀ Ѕѕ Rr Кк
Ӯӯ Ўў Ўў Ee Уу

one have to guess the whole replacement set which the particular document
uses. Moreover, sometimes people write й instead of -и and bigrams х, к, or ч,
(i.e. letter and comma) instead of proper letters ҳқҷ.

Out of 192,664 documents (web pages, newspapers articles etc.), 169,233
need not any change (87.8 %), 21,524 needs some replacements, in 1323 doc-
uments the “diacritics” was restored (RS4), and finally for 584 there was need
both for replacements and the diacritics restoration.

2391 documents use RS1, 778 RS3 and 113 documents use RS2. The bigrams
were used in 2453 words and й instead of -и in 77812 words. In total, 859641
words was somehow modified which is more than 1 % of all words in the
corpus.

Numbers of particular changes and other useful information are described
in each document’s metadata which allows users to create specific subcorpora,
e.g. subcorpus of texts without any changes (probably the most quality ones).

3 Future Work

The semi-automatic crawling was run a year ago, then after four months and
then now. The automatic crawling was run a year ago, then after four months,
after six months, and finally now. From the respective tables it can be seen,
that the growth is not strictly linear, but the achievement of 100 million tokens
seems to be possible during the next year.

Table 2. Growth of the semi-automatically crawled part.

date tokens increment per month
11/2011 40.6 M — —
03/2012 43.3 M +6.7 % 1.7 %
11/2012 47.2 M +9.1 % 1.1 %

In the nearest future we want to further improve the analyzer to achieve
better coverage and also we want to employ some kind of morphological
guessing of unknown words. Then we will be able to develop a tagger and
some tools for complex verbs and noun phrases detection which all will allow

94 Gulshan Dovudov, Vít Suchomel, Pavel Šmerk

Table 3. Growth of the automatically crawled part.

date tokens increment per month
11/2011 34.6 M — —
03/2012 41.1 M +18.6 % 4.7 %
05/2012 44.7 M +8.6 % 4.3 %
11/2012 54.8 M +22.6 % 3.8 %

us to create word sketches [4] for Tajik words. That is why we need to have the
corpus as big as possible: 100 million words is considered as a minimum for
word sketches to work reasonably.

Acknowledgements

This work has been partly supported by Erasmus Mundus Action II lot 9: Part-
nerships with Third Country higher education institutions and scholarships for
mobility, and by the Ministry of Education of CR within the LINDAT-Clarin
project LM2010013.

References

1. Dovudov, G., Pomikálek, J., Suchomel, V., Šmerk, P.: Building a 50M Corpus of Tajik
Language. In: Proceedings of the Fifth Workshop on Recent Advances in Slavonic
Natural Language Processing, RASLAN 2011. Masaryk University, Brno (2011)

2. Dovudov, G., Suchomel, V., Šmerk, P.: POS Annotated 50M Corpus of Tajik Language.
In: Proceedings of the Workshop on Language Technology for Normalisation of Less-
Resourced Languages (SALTMIL 8/AfLaT 2012). European Language Resources
Association (ELRA), Istanbul (2012)

3. Kilgarriff, A., Reddy, S., Pomikálek, J., PVS, A.: A Corpus Factory for Many Lan-
guages. In: Proceedings of the Seventh International Conference on Language Re-
sources and Evaluation, LREC 2010. Valleta, Malta (2010)

4. Kilgarriff, A., Rychlý, P., Smrž, P., Tugwell, D.: The Sketch Engine. In: Proceedings of
EURALEX. pp. 105–116 (2004)

5. Quasthoff, U., Richter, M., Biemann, C.: Corpus Portal for Search in Monolingual Cor-
pora. In: Proceedings of the Fifth International Conference on Language Resources
and Evaluation, LREC 2006. Genoa (2006)

6. Suchomel, V., Pomikálek, J.: Practical Web Crawling for Text Corpora. In: Proceedings
of the Fifth Workshop on Recent Advances in Slavonic Natural Language Processing,
RASLAN 2011. Masaryk University, Brno (2011)

Part IV

Language Modelling

Building A Thesaurus Using LDA-Frames

Jiří Materna

Centre for Natural Language Processing
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00, Brno, Czech Republic

xmaterna@fi.muni.cz

Abstract. In this paper we present a new method for measuring semantic
relatedness of lexical units, which can be used to generate a thesaurus au-
tomatically. The method is based on a comparison of probability distribu-
tions of semantic frames generated using the LDA-frames algorithm. The
idea is evaluated by measuring the overlap of WordNet synsets and gen-
erated semantic clusters. The results show that the method outperforms
another automatic approach used in the Sketch Engine project.

Key words: thesaurus, LDA-frames, semantic relatedness, lexical seman-
tics

1 Introduction

Identifying meaning of words is one of the crucial problems in linguistics.
While ordinary monolingual dictionaries index words alphabetically and pro-
vide a definition for every record, thesauri index words senses and group
words with similar meaning. However, there is an important difference be-
tween lexicons of synonyms and thesauri. The clustered words in thesauri are
not exactly synonyms. Thesauri rather group words with similar patterns of
usage or semantically related words across parts of speech. As in other areas
of linguistics, there is an important issue of polysemy. Since most of words in
natural languages may have different meanings depending on the contexts in
which they are used, a word usually belongs to multiple clusters. For instance,
the word bank has two meanings – a financial institution and a border of a river,
thus it should belong into two clusters.

Thesaurus is not only a useful resource helping to find and understand
related words or phrases, which is mainly used by writers when hesitating
what word they should choose. A word cluster or ranked list of similar words
has many applications in natural language processing. One such application is
the information retrieval task. In an information retrieval system, the query can
be augmented by semantically related terms, which may lead to better retrieval
quality.

One of the most popular English thesauri is Roget’s thesaurus. It is a
widely used English language thesaurus created by Dr. Peter Mark Roget in
nineteenth century [6]. Another manually created resource grouping similar

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 97–103, 2012. c○ Tribun EU 2012

mailto:xmaterna@fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

98 Jiří Materna

words together is WordNet [3]. WordNet is an electronic lexical database of
English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive
synonyms called synsets, each expressing a distinct concept. Moreover, synsets
are interlinked by means of conceptual-semantic and lexical relations. In
comparison to Roget’s thesaurus, which is primarily intended to be used by
humans, WordNet is more often utilized in natural language processing taks.

Since the manual creation of thesauri, and the dictionaries in general,
is a very time-consuming work, there are some attempts to create thesauri
automatically by processing corpora. The similarity between words is usually
measured by looking at their usage in texts. The same approach is used in a
thesaurus generated using the Sketch Engine [7]. The similarity of lexical units
in the Sketch Engine is measured by comparing so called word sketches. Word
sketches are automatic, corpus-based summaries of a word’s grammatical and
collocational behaviour, which takes as input a corpus of any language and
corresponding grammar patterns. The resulting summaries are produced in the
form of a ranked list of common word realizations for a grammatical relation
of a given target word.

In this work we proposed a similar method, which, instead of comparing
word sketches, compares semantic frames of target words. Because the LDA-
frames approach provides a probabilistic distribution over all frames, and is
able to distinguish between different word senses, this method acquires better
results than the Sketch Engine. It is demonstrated by measuring overlap with
WordNet synsets.

2 LDA-frames

LDA-frames [8] is an unsupervised approach to identifying semantic frames
from semantically unlabelled text corpora. There are many frame formalisms
but most of them suffer from the problem that all frames must be created
manually and the set of semantic roles must be predefined. The LDA-Frames
approach, based on the Latent Dirichlet Allocation [1], avoids both these
problems by employing statistics on a syntactically tagged corpus. The only
information that must be given is a number of semantic frames and a number
of semantic roles to be identified. This limitation, however, can be avoided by
automatic estimation of both these parameters.

In the LDA-frames, a frame is represented as a tuple of semantic roles, each
of them connected with a grammatical relation i.e. subject, object, modifier, etc.
These frames are related to a predicate via a probability distribution. Every
semantic role is represented as a probability distribution over its realizations.

The method of automatic identification of semantic frames is based on the
probabilistic generative process. We treat each grammatical relation realization
as generated from a given semantic frame according to the word distribution
of the corresponding semantic role. Supposing the number of frames is given
by the parameter F and the number of semantic roles by R. The realizations are

Building A Thesaurus Using LDA-Frames 99

generated by the LDA-Frames algorithm as follows.

For each lexical unit u ∈ {1, 2, . . . , U}:

1. Choose a frame distribution ϕu from Dir(α).
2. For each lexical unit realization t ∈ {1, 2, . . . , T} choose a frame fut from

Mult(ϕu), where fut ∈ {1, 2, . . . , F}:
3. For each slot s ∈ {1, 2, . . . , S} of the frame fut

(a) look up the corresponding semantic role ruts from ρ futs, where ruts ∈
{1, 2, . . . , R}.

(b) generate a grammatical realization wuts from Multinomial(θruts)

The graphical model for LDA-Frames is shown in the figure 1. In this model,
ρ f ,s is a projection (f , s) ↦→ r, which assigns a semantic role for each slot s
of a frame f . This projection is global for all lexical units. The multinomial
distribution of words, symbolized by θr, for a semantic role r is generated
from Dirichlet(β). The model is parametrized by hyperparameters of prior
distributions α and β, usually set by hand to a value between 0.01 – 0.1.

α φ f r w

U
T

S

θρ β
F

S
R

u u,t u,t,s u,t,s

f,s r

Fig. 1. Graphical model for LDA-Frames.

For the inference we use collapsed Gibbs sampling, where the θ, ρ and
ϕ distributions are marginalized out. After having all topic variables f and r
inferred, we can proceed to computing the lexical unit–frame distribution and
the semantic role–word distribution. Let Cϕ

u f be the count of cases where frame

f is assigned to lexical unit u, Cθ
rw is the count of cases where word w is assigned

to semantic role r and V is the size of vocabulary. The ϕ and θ distributions are
computed using the following formulas:

100 Jiří Materna

ϕu =
Cϕ

u f + α

∑ f Cϕ
u f + Fα

(1)

θr =
Cθ

rw + β

∑w Cθ
rw + Vβ

(2)

3 Measuring Semantic Relatedness

The semantic frames generated by the LDA-Frames algorithm are an interesting
source of information about selectional preferences, but they can even be used
for grouping semantically related lexical units. Separated semantic frames
can hardly capture the whole semantic information about a lexical unit.
Nevertheless, the LDA-Frames provide an information about the relatedness to
every semantic frame we have inferred. After the inference process, each lexical
unit u is connected with a probability distribution over semantic frames ϕu.
Thus, we can group lexical units with similar probability distributions together
to make a semantic cluster. In this work we will call these clusters similarity sets.

There are several methods how to compare probability distributions. We use
the Hellinger Distance, which measures the divergence of two probability dis-
tributions, and is a symmetric modification of the Kullback-Leibner divergence
[5]. For two probability distributions ϕa, ϕb, where P(f |x) is the probability of
frame f being generated by lexical unit x, the Hellinger Distance is defined as
follows:

H(a, b) =

√√√√1
2

F

∑
f=1

(√
P(f |a)−

√
P(f |b)

)2
(3)

By using the Hellinger distance, we can generate a ranked list of seman-
tically similar words for every lexical unit u the semantic frames have been
computed for. Then the similarity set is chosen by selecting n best candidates
or by selecting all candidates c, where H(u, c) < τ for some threshold τ.

4 The Experiment

The experiments have been performed for all transitive verbs having their
lemma frequency in British National Corpus grater than 100. The transitiveness
has been determined by selecting those verbs that have both subject valency
and direct object valency presented in the Corpus Pattern Analysis lexicon [4].
Such constraints have been fulfilled by 4053 English verbs.

In order to generate LDA-frames for those English verbs, we have syntac-
tically annotated British National Corpus using the Stanford Parser [2]. It has

Building A Thesaurus Using LDA-Frames 101

provided a set of approximately 1.4 millions of (verb, subject, object) tuples that
have been used as the training data for the LDA-frames algorithm. Based on
previous experiments [8], we set the number of frames to 1200, number of roles
to 400, and the hyperparameters as follows α = 0.1, β = 0.1. After inferring ϕ
distributions for every lexical unit, we have created a list of similar verbs sorted
in ascending ordered based on the distance measure described in the previous
section. The verbs with distance 1.0 were omitted. Using those data we have
created 20 different thesauri. For 1 ≤ n ≤ 20 the thesaurus has been built as the
set of at most first n items from the similarity lists for every verb.

We have evaluated the quality of the thesauri built using LDA-frames by
comparing them to the thesauri obtained from the Sketch Engine. To be fair, the
word sketches have been generated on the British National Corpus just using
the subject_of and object_of grammatical relations. The resulting thesaurus
is in the form of sorted list of similar words, so we have been able to use
the same method as in the case of the LDA-frames thesaurus and to create 20
thesauri in the same way.

It is obvious that not all verbs have got exactly n similar verbs in their
similarity sets, because verbs with distance 1.0 were omitted. Table 1 shows
average number of words in the similarity sets for every n we considered.

Table 1. Average number of words in the similarity sets.

n 1 2 3 4 5 6 7 8 9 10
LDA-frames 1.0 1.99 2.99 3.99 4.98 5.98 6.97 7.96 8.95 9.93
Sketch Engine 1.0 1.98 2.97 3.94 4.90 5.86 6.80 7.74 8.67 9.59

n 11 12 13 14 15 16 17 18 19 20
LDA-frames 10.91 11.89 12.87 13.85 14.82 15.79 16.76 17.73 18.69 19.66
Sketch Engine 10.50 11.40 12.30 13.18 14.05 14.92 15.77 16.61 17.45 18.27

The results from the table can be interpreted in the way that the Sketch En-
gine thesauri are stricter than LDA-frames ones and produce smaller similarity
sets.

In order to measure the quality of the generated thesauri we have com-
pared the similarity sets with synsets from English WordNet 3.0. First, we have
selected verbs contained in both WordNet and our set of verbs. There were 2880
verbs in the intersection. The quality has been measured as the average number
of verbs from a similarity set contained in the corresponding WordNet synset,
normalized by the size of the similarity set. Formally, let V be the number of
investigated verbs vi, T(v) similarity set for verb v in thesaurus T and W(v)
synset for verb v in WordNet:

Score(T) =
1
V

V

∑
v=1

|T(v) ∩ W(v)|
|T(v)| (4)

102 Jiří Materna

Resulting scores of both the Sketch Engine thesaurus and the LDA-frames
thesaurus for similarity set sizes 1 ≤ n ≤ 20 is shown in figure 2. One
can see that the LDA-frames thesaurus outperforms the Sketch Engine for
any choice of the size of similarity sets. The difference is most noticeable
when n = 1. This special case measure whether the most similar verb is
presented in the corresponding WordNet synset. This condition is satisfied in
approximately 9.5 % verbs for LDA-frames and 6.5 % for Sketch Engine. The
scores may seem to be quite small but it is important that only subject and object
grammatical relations have been taken into consideration when computing
the similarity. This means, for instance, that English verbs eat and cook have
very high similarity scores, because they both are used in the same contexts
and have completely identical semantic frames. It is straightforward that the
algorithm could achieve much better results if there were used more than two
grammatical relations. Specifically, verbs eat and cook could be differentiated,
for example, by adding a grammatical relation corresponding with what
instrument is used for eating or cooking.

Sc
o

re

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Similarity set size
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

LDA-frames
Sketch Engine

Fig. 2. Comparison of Sketch Engine thesaurus and LDA-frames thesaurus.

Building A Thesaurus Using LDA-Frames 103

5 Conclusion

In this work we presented a new method for automatic building thesaurus from
text corpora. The algorithm was applied to texts from the British National Cor-
pus, and the quality was judged by measuring overlap with manually created
synsets from WordNet 3.0. The results show that our algorithm outperforms
similar approach from the Sketch Engine on the same training data. Only sub-
ject and object grammatical relation have been taken into consideration. In the
future, we would like to enhance training data by other grammatical relation,
which should lead to significantly better results.

Acknowledgements This work has been partly supported by the Ministry of
Education of CR within the LINDAT-Clarin project LM2010013 and by EC FP7
project ICT-248307.

References

1. David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. J.
Mach. Learn. Res, 3:993 – 1022.

2. Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Gen-
erating Typed Dependency Parses from Phrase Structure Parses. In The International
Conference on Language Resources and Evaluation (LREC) 2006, 2006.

3. Christiane Fellbaum. WordNet: An Electronic Lexical Database. The MIT Press, 1998.
4. Patrick Hanks and James Pustejovsky. A Pattern Dictionary for Natural Language

Processing. In Revue Francaise de Langue Appliquée. Brandeis University, 2005.
5. Michiel Hazewinkel. Encyclopedia of Mathematics. Springer, 2001.
6. Werner Hüllen. A History of Roget’s Thesaurus: Origins, Development, and Design. OUP

Oxford, 2003.
7. Adam Kilgarriff, Pavel Rychlý, Pavel Smrž, and David Tugwell. The Sketch Engine.

In Proceedings of the Eleventh EURALEX International Congress, pages 205–116. Lorient,
France, 2004.

8. Jiří Materna. LDA-Frames: An Unsupervised Approach to Generating Semantic
Frames. In Alexander Gelbukh, editor, Proceedings of the 13th International Conference
CICLing 2012, Part I, pages 376–387, New Delhi, India, 2012. Springer Berlin /
Heidelberg.

Improving Automatic Ontology Developement

Marek Grác, Adam Rambousek

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
xgrac@fi.muni.cz, xrambous@fi.muni.cz

Abstract. This article describes the approach to build a new semantic
network, which contains not only positive semantic labeling, but also
the negative information. In order to obtain high quality data for the
following use in machine learning and machine translation, we have
created method based on automatically pre-generated data from the large
corpora, followed by manual annotation. In this way, the core of semantic
network was produced, which can be expanded to improve corpora
coverage.

Key words: semantic network, ontology, ontology development

1 Introduction

To improve current complex NLP application we need to explore semantic
level of natural languages. Both prevalent techniques (rule based and machine
learning) tend to use information obtained from morphology and syntax level
what lead to a situation where we cannot expect major improvement without
adding something new. It can be completely new algorithms, more computing
power or new data resources. In this paper we would like to focus on creating
a new machine readable semantic network that will fill an existing gap.

Semantic networks and ontologies are used in NLP for several last decades.
These networks focus on various aspects of semantic layer. There are ones
which cover word senses (e.g. WordNet [1]) and other that are on the boundary
of semantic and pragmatic layer of language (e.g. CyC [2]). The focus on
semantic network is heavilly dependent on target applications. Ours goals are
improving of syntactic parsing and as a result improve information extraction
process from free text. Words in a language are very often bound to a specific
set of words in language. These relations are traditionally called valencies.

Valencies, in various forms, are present for almost every PoS in language.
The most studied ones are traditionally verb valencies. We have several verb
valencies lexicons based on different linguistic theories which targets different
usage. The most known are VerbNet [3], FrameNet [4] and Pattern Dictionary
of English Verbs [5]. It is very important that such resources are consistent,
they have acceptable coverage and that they are in superior quality. Such
high expectations means that their development is expensive and unobtainable
for smaller languages. Automatic methods of creating verb valencies using

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 105–110, 2012. c○ Tribun EU 2012

mailto:xgrac@fi.muni.cz
mailto:xrambous@fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

106 Marek Grác, Adam Rambousek

unsupervised methods of machine learning on unlabelled corpora are also
available. Their quality vary a lot depending on language and used resources
but in general hand-made (or semi-automatic) methods are still better even if
they have lower coverage on text in corpora.

If we can automatically obtain valencies then we can create a thesaurus or
even semantic network directly. But we can do it also in reverse order. If we
have semantically labeled corpora obtaining a valency lexicon is no longer such
difficult problem. In this paper we will show that we can iterativelly detect
valencies and improve semantic network. In current state we cannot create
valencies for verbs but we will use methods which are simple but suprisingly
precise.

2 Semantic Network

Existing shallow semantic networks are influenced by Princenton’s Word-
Net [1]. In fact WordNet is probably only network which lead to development
of similar projects, for example different languages like EuroWordNet [6] and
BalkaNet [7], or extensions like OntoWordNet [8] and eXtended WordNet [9].

For our experiment we have decided to use a Czech language because there
is a Czech wordnet and thus ours results can be easilly compared to existing
resources. As we expect to use proposed methods for languages without
deep NLP support we will use only limited amount of technologies. Czech
language is highly inflective with (almost) free word order in sentence. This
means that direct usage of statistical methods will not work perfectly due
to sparsness of data. For this purpose we will use morphological analyzer
[10], guesser for unknown words and tagger / lemmatizer to obtain corpora
with desambiguated morphological information. Used tagger ’desamb’ [11] has
precision sligtly over 90% and it’s precision is very close to precision of taggers
for other smaller languages. Existing Czech WordNet has almost same structure
as Princeton one and we will use english names of elements across this paper.

When we take a look at verb valency dictionaries then the semantic class
which is one of the most common is ’person’ which is usually in position of
’agens’. In Czech language position of subject is in specific case ’nominative’ but
word-form representing this case is systematically same with case ’accusative’
which represents object. Due to free word order, we are unable to obtain very
high precision in this situation with just morpho-syntactic information.

Position of ’subject’ with semantic class ’person’ is very common but only
very rarely subject is bound only to this specific class. More often there are also
other semantic classes: institution and animals. These three classes are used in
very similar way and it is very difficult to distinguish person and institution.

John loves Apple.
John loves Mary.

Simplest solution is to to create a new semantic class which will contain
all such classes. Then we are in situation when John, Apple or bakery are in
a same class because these words can be represented by person (or animal).

Improving Automatic Ontology Developement 107

Bakery should also be in semantic class ’location’ or ’building’. In WordNet-
like networks this is done by adding new ’sense’ of word which is hyponym for
’building’. We prefer not to fragment senses of words into separate categories
and we do not target to an application that can uses such information. This
was a main reason why we have decided to just add attributes to words. These
attributes can be in hyponymy/hyperonymy relations.

We also believe that static (hard-coded) language resources are incomplete
and they cannot be completed for living languge. This lead us to prefer open
world assumptions (OWA) [12] in our ontology. OWA means that information
which cannot be disapproved can be valid. Missing words in semantic network
can have any available attributes. Because of OWA we have decided to populate
the semantic network not only with positive information (John can have
attribute freewill) but also negative information (table cannot have attribute
freewill). Using such negative information helps us to properly work with words
and valencies when we do not know what it is but we know that this can’t
be ’person’ for example. In fact our preliminary results show us that these
negative information are more usefull for syntactic parsing than positive ones.
Mainly because quality of syntactic parser is so high that more often we will
just confirm correct answer by semantic network but negative information will
show us possible errors.

Problem with attributes instead of direct usage of hyponymy/hyperonymy
relations is that we (in ideal world) have to work with every word in language.
Expenses for annotation are then quite linear. For N semantic classes we have to
answer N question for every word. Hypo/hypero relation between attributes
can helps us to have N sufficiently low.

Annotation framework SySel [13] can be used to distribute and work with
dividing words into categories. For yes/no questions the average answer is
gathered from annotator in 1-2 seconds what lead to approx. 2,000 words /
hour. Even if we need to annotate each word by several annotators, this process
is really fast for smaller groups of words / semantic classes. If we need to
distinguish attributes like can-it-looks-like-pumpkin? then it is very effecient
way. Even if we have to handle usually only tens of thousands words (in
our experiment approx. 100,000) then we would like to improve possibility to
automatically add new words into semantic classes.

3 Extending existing semantic network

At the start of our experiment we did not focus on automatic methods of
extending semantic network. Our decision was to create a completely new
and free semantic network which will improve our existing tools. Creating a
semantic network was not a goal of this process and that is main reason why
our network has still huge gaps in semantic classes. We prefer do create a new
semantic classes in a momement when we expect that they will improve tools
not because we wish that they will maybe help one day.

108 Marek Grác, Adam Rambousek

In the first stage of project, 30 student annotators works with SySel to
annotate 100,000 words if they can be freewill or they can’t be. Each word was
annotated at least two times and to accept a word/attribution/boolean, the
metrics showed in table 1 were used.

Table 1. Accept metrics

of annotators non-agreement-annotation
2 - 4 0
5 - 8 1
9 - 12 2
12 + 3

We were able to create a semantic network that consists of 4,538 words
which have attribute freewill and 101,303 that cannot have attribute freewill.
More than 9,000 words didn’t have the annotator agreement high enough to
add them to semantic network. Relatively high level of inter-annotator error
was probably due the fact of using work-power where some students did not
focus on work (e.g. man is not freewill even if word is in examples) and only
partially due to borderline words (e.g. democracy) that were not specified in
annotation manual.

Semantic network have to be incomplete but we can attempt to improve
it and extend it. We decided to test the most simple options of using existing
semantic network and parsed corpora to do it.

In most of the language with free word order it is very difficult to match
subject/verb and similar relations and full syntactic analysis is needed. But
usually there are at least some rules that works pretty well. For Czech language
we were able to identify those three:

– preposition, noun
– adjective, noun (if they have agreement in case, gender, number)
– noun, noun in genitive case - construction similar to english ’X of Y’

Very fast we found out that there is no preposition which is bound exclu-
sively with freewill. Number of adjectives and nouns lead us to develop an au-
tomatic finder for such situations.

We want to find such words that are bound (almost) exclusively with given
semantic class freewill using existing semantic network. From parsed corpora
we will extract all bigrams which match our morphological rules. Then we
will prepare stastistic for usage of each adjective with semantic class. These
statistics is later filtered to contain only those adjectives which are used (almost)
exclusively with words with possitive attribute freewill. Words which misses
that attribute in semantic network (or they are not in network at all) will be
accepted if there are enough adjectives that are used together with this word.

What are the main problems of this process?

Improving Automatic Ontology Developement 109

– Our attributes means that word represents this attribute in one of its senses,
this is important because in some cases we can detect adjective together
with word-sense which we do not plan. e.g five-pointed star vs rock star.

– We can find out adjectives which are only partially relevant. Quite a lot
of found adjective belongs to group of adjective that represents ’X years
old’. Our system correctly does not find one-year old, five-years old because
there are lot of mentions of wine, whiskey, buildings, ... and it will correctly
find 72-years old as such numbers are usually specific for person. Very
similar process is in place for possesive adjective (e.g. dog’s, Achilles’s).

– As we are working with bigrams directly it is possible that we will add a
word which do not have semantic representation of attribute directly. e.g
He ate a ”box” of chocolate. The word ’box’ works just as a modifier in
this context. We can detect these words because they will occur as positive
examples for most of the attributes.

Process itself is relatively fast and on 350 million corpora it took less than
3 hours to make one iteration. Due to quality of data we can add found words
to semantic network automatically and re-run the process. Our experiments
showed that few iteration will drastically improve coverage and this method
can very easilly solve border-line cases where human annotators are not sure.
Border-line cases does not have to be solved consistently but we can add words
only to positive side of semantic network.

tabulka s vysledkami

Table 2. Coverage

of words identified k1 coverage ‘k2 k1‘ coverage
manual 105,840 68.26% 94.28%
after 1st iteration 106,044 74.48% 96.08%
after 2nd iteration + selected
proper nouns1

106,250 81.49% 97.99%

after 3rd iteration 106,942 83.07% 98.6%

Table 3. Random samples of 10,000 words with freewill attribute, called seed1,
seed2, seed3

sample k1 coverage new words precision
seed1, iteration 2 25.51% 84.50% (780 words)
seed2, iteration 2 40.76% 75.78% (1514 words)
seed2, iteration 3 33.19% 72.24% (788 words)

110 Marek Grác, Adam Rambousek

4 Evaluation and future extensions

As seen in table 3, automatic detection algorithm combining manual annotation
of small starting set, valency detection, and limiting linguistic rules works very
well in identifying word attributes, ie. can say that word belongs to particular
semantic class.

Negative attributes, ie. information that word does not belong to semantic
class, are very useful feature for the applications using the semantic network.
Such knowledge can reduce the time needed to parse the text, for example.
However, negative attributes in our semantic network are annotated manually
only. Current rules and tools for automatic annotation does not provide preci-
sion good enough to include in semantic network. Improvement of negative at-
tributes detection is one of the next steps of this project. Coverage enhancement
is the other big goal, both in terms of annotated words, and different semantic
classes.

Acknowledgements This work has been partially supported by the Ministry
of Education of CR within the LINDAT-Clarin project LM2010013 and by EC
FP7 project ICT-248307.

References

1. Fellbaum, C., ed.: WordNet: An Electronic Lexical Database. MIT Press (1998)
2. Lenat, D., Guha, R., Pittman, K., Pratt, D., Shepherd, M.: Cyc: toward programs with

common sense. Communications of the ACM 33(8) (1990) 30–49
3. Schuler, K.: VerbNet: A broad-coverage, comprehensive verb lexicon. PhD thesis,

University of Pennsylvania (2005)
4. Fillmore, C., Baker, C., Sato, H.: Framenet as a ’net’. In: Proceedings of Language

Resources and Evaluation Conference (LREC 04). Volume vol. 4, 1091-1094., Lisbon,
ELRA (2004)

5. Hanks, P., Pustejovsky, J.: A pattern dictionary for natural language processing.
Revue Française de linguistique appliquée 10(2) (2005) 63–82

6. Vossen, P., ed.: EuroWordNet: a multilingual database with lexical semantic
networks for European Languages. Kluwer (1998)

7. Christodoulakis, D.: Balkanet Final Report, University of Patras, DBLAB (2004) No.
IST-2000-29388.

8. Gangemi, A., Navigli, R., Velardi, P.: The ontowordnet project: extension and
axiomatization of conceptual relations in wordnet. On The Move to Meaningful
Internet Systems 2003: CoopIS, DOA, and ODBASE (2003) 820–838

9. Mihalcea, R., Moldovan, D.: extended wordnet: Progress report. In: Proceedings of
NAACL Workshop on WordNet and Other Lexical Resources. (2001) 95–100

10. Šmerk, P.: Fast morphological analysis of czech. RASLAN 2009 Recent Advances in
Slavonic Natural Language Processing (2009) 13

11. Šmerk, P.: K morfologické desambiguaci češtiny. (2008)
12. Reiter, R.: On closed world data bases. Technical report, Vancouver, BC, Canada,

Canada (1977)
13. Grác, M., Rambousek, A.: Low-cost ontology development. (In: 6th International

Global Wordnet Conference Proceedings) 299–304

Authorship Verification based on Syntax Features

Jan Rygl, Kristýna Zemková, Vojtěch Kovář

NLP Centre
Faculty of Informatics
Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic
xrygl@fi.muni.cz

Abstract. Authorship verification is wildly discussed topic at these days.
In the authorship verification problem, we are given examples of the writ-
ing of an author and are asked to determine if given texts were or were
not written by this author. In this paper we present an algorithm us-
ing syntactic analysis system SET for verifying authorship of the doc-
uments. We propose three variants of two-class machine learning ap-
proach to authorship verification. Syntactic features are used as attributes
in suggested algorithms and their performance is compared to established
word-lenth distribution features. Results indicate that syntactic features
provide enough information to improve accuracy of authorship verifica-
tion algorithms.

Key words: authorship verification, syntactic analysis

1 Introduction

The interest in autorship verification can be found in 18th century in the
Shakespearean era. A lot of linguists wanted to prove (or disprove) that William
Shakespeare wrote the well known plays [1]. After that, this topic was discussed
more and more often.

The task of authorship verification is commonly distinguished from that
of authorship attribution. In both text classification approaches, the task is
to decide whether a given text has been written by a candidate author. In
authorship attribution, the actual author is known to be included in the set of
candidates (closed case). In authorship verification, however, this assumption
cannot be made: the given text might have been written by one of the candidate
authors, but could also be written by none of them (open case). Note that
this scenario is typical of forensic applications where it cannot be presupposed
that the author of, for example, a letter bomb is among the suspect candidate
authors.[2]

There are three main approaches to the authorship verification:

1. One-Class Machine Learning: In this approach[3] authors used only posi-
tive examples for training, because they consider difficult to select repre-
sentative negative examples.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 111–119, 2012. c○ Tribun EU 2012

http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

112 Jan Rygl, Kristýna Zemková, Vojtěch Kovář

2. Two-Class Machine Learning: The technique is established for an author-
ship attribution task.

3. Unmasking algorithm: The main assumption is that only small number
of features distinguish between authors. The most distinguishing features
are iteratively removed. Hypothesis is that whatever differences there are
between document will be reflected in only a relatively small number of
features. [4]

So far, not many authors have specialized their work to authorship verifi-
cation, especially with syntactic features. The availability of fast and accurate
natural language parsers allow for serious research into syntactic stylometry. [5]

In this paper, we focus on syntactic features combined with the Two-
Class Machine Learning approach. The unmasking algorithm requires several
different types of features and One-Class Machine Learning performs worse
than Two-Class ML [3]. Three implementations of Two-Class ML approach are
tested. The basic variant using Support Vector Machines is utilized and two
modifications are suggested:

– The authorship verification problem is converted to the authorship attribu-
tion task by adding several random documents.

– In the authorship attribution problem, similarities of documents are trans-
formed to rankings of documents. [6]

Because, unlike other publications, we work with texts consisting of up to tens
of sentences, we have to cope with insufficiency of qualitative and quantitative
information. Not many linguistics have focused on short texts because not
enough material can cause lower accuracy.

2 Syntactic Analysis of the Czech Language

The main aim of the natural language syntactic analysis is to show the surface
structure of the input sentence. Czech is one of the free-word-order languages
with rich morphology that poses barriers to parsing using formalisms that
are relatively succesfull when used with fixed-word-order languages such as
English. Because of unrestricted word order in Czech, current Czech parsers
face problems such as high ambiguity of the analysis output or low precision
or coverage on corpus texts.

There are three main approaches to the automatic syntactic analysis of
Czech at this time. The first uses the formalism of Functional Generative
Description, FGD, for syntax description and is developed at the Institute of
Formal and Applied Linguistics in Prague. Within this formalism, the syntactic
information is encoded as an acyclic connected graph of dependency relations,
called dependency tree. [7]

The second approach to Czech language parsing, synt, uses the constituent
formalism of syntax and its development centre is located at the Natural
Language Processing Centre of Masaryk University in Brno. The constituent

Authorship Verification based on Syntax Features 113

formalism encodes the syntactic information as a derivation tree based on the
formal grammar of the language. System synt is based on a metagrammar
formalism with a context-free backbone, contextual actions and an efficient
variant of the chart parsing algorithm. [8]

The third approach is system SET. This open source tool was developed
at the NLP Centre as well. SET is based on the simple principle of pattern
matching, so it is fast, understandable for people and easily extensible. It is
written in Python which means it is easily usable on different platforms and
there is no need for complicated installation. The core of SET consists of a
set of patterns (or rules) and a pattern matching engine that analyses the
input sentence according to given rules. Currently, SET is distributed with a
set of rules for parsing the Czech language, containing about 100 rules. The
primary output of the analysis is a hybrid tree – a combination of constituent and
dependency formalism – but SET also offers converting this tree into purely
dependency or purely constituent formalism. Other output options include
extraction of phrases in several settings, finding dependencies among these
phrases or extraction of collocations.

3 Extracting Syntax Features using SET

Nowadays, SET is one of the fastest available parsing systems for Czech with
reasonable precision, it is freely available and very easy to use. Therefore we
decided to use it for extraction of syntactic features in our experiment. As
outlined above, SET produces parsing trees in three possible output fomats:
dependency format (-d option), constituent format (-p option) and hybrid
format (default). Dependency and constituent tree is illustrated in Figure 1,
for Czech sentence Verifikujeme autorství se syntaktickou analýzou. (We verify the
authorship using syntactic analysis.), as analyzed by SET. On the left hand side,
we can see a phrasal tree; on the right side, a dependency tree.

Fig. 1. Dependency and phrasal tree from SET

114 Jan Rygl, Kristýna Zemková, Vojtěch Kovář

The dependency and phrasal output of SET was used to extract features
for machine learning of differences among the authors. Namely, the following
features were used:

– maximum depth of the dependency tree
– highest number of child nodes in the dependency tree
– absolute and relative frequencies of particular non-terminals in the phrasal

tree (e.g. <CLAUSE>, <NP>, <VP>)
– absolute and relative frequencies of particular dependency labels in the

dependency tree (e.g. prep-object, verb-object)

4 Authorship Verification Algorithms

In authorship verification problem, we are given two documents A and B and
are asked to determine if documents were or were not written by the same
author.

Two-Class Machine Learning algorithm was implemented and other two
algorithms were designed to verify that two documents were written by the
same author.

1. Two-Class Machine Learning:
Basic approach to Authorship Verification is to train Machine Learning
model to decide if two documents A, B do or do not have the same au-
thor. The main disadvantage is that it is impossible to cover all types of
negative examples in training data.

given document A, document B, empty attributeList

for i in 1 ...count(features) :

feature = features[i]

attributeList[i]= |feature(document A)− feature(document B)|
Model(attributeList) predicts if documents were written by same author.

2. Converting verification to attribution problem:
"Authorship verification . . . generally deemed more difficult than so-called
authorship attribution."[2], therefore we transformed problem by adding 4
documents D1, . . . , D4. Attribution method selects from candidates B, D1,
. . . , D4 the most similar document to A. If the document B is selected with
enough confidence, documents A and B are written by same author.

given document A, document B, empty attributeList

select 4 random documents (D1, D2, D3, D4) of similar length to document B
for doc in (document B, D1, D2, D3, D4):

empty attributeList

for i in 1 ...count(features) :

feature = features[i]

attributeList[i] = |feature(document A)− feature(doc) |
Model(attributeList) computes probability prob doc of same authorship

Authorship Verification based on Syntax Features 115

if prob B >= 0.5 ∧ prob B = max(prob B,1,2,3,4): "same authorship"

3. Algorithm 2 extended by replacing similarity scores by their rankings:
Our previous experiments showed that accuracy of Authorship Attribution
problem can be improved by replacing similarities of documents by their
rankings. [6]

given document A, document B, empty attributeList

select 4 random documents (D1, D2, D3, D4) of similar length to document B
for i in 1 ...count(features) :

feature = features[i]

rank = 1
diff= |feature(document A)− feature(document B)|
for doc in (D1, D2, D3, D4):

if |feature(document A)− feature(doc) | <diff : rank + =

1
attributeList[i] = 1

rank
Model(attributeList) predicts if documents were written by same author.

5 Experiments

Data

400 Czech documents (10 documents per author) downloaded from the Internet
were used. The data were collected from Czech blogs and Internet discussions
connected to these blogs and were preprocessed automatically by the Czech
morphological tagger Desamb [9] and the SET parser [7]. The document length
ranges from 1 to about 100 sentences.

Machine Learning

LIBSVM [10] implementation of Support Vector Machines algorithm was se-
lected as the machine learning component and 4-fold cross-validation was used
for evaluation.

Authors were divided into 4 groups, each group contained 10 authors and
100 documents. During all experiments, authors of learning documents were
different to authors of test documents.

Models were trained utilizing 1000 positive and 1000 negative examples for
each scenario. To create positive examples, documents A and B were randomly
selected from the same author; to simulate negative examples, an author of
document B was different to the author of A. Authors of documents D1, . . . , D4
used in algorithm 2 and 3 were different to authors of A and B for both positive
and negative examples.

116 Jan Rygl, Kristýna Zemková, Vojtěch Kovář

Algorithm 1: Two-Class ML

For the basic algorithm, the average accuracy was 57.9 % (7.9 % over the
baseline). Detailed results are shown in Table 1.

Table 1. Results of Algorithm 1

(a) Folder 1: Accuracy: 51.1 %

Positive Negative
True 280 (38.5 %) 92 (12.6 %)
False 272 (37.4 %) 84 (11.5 %)

(b) Folder 2: Accuracy: 55.4 %

Positive Negative
True 360 (41.7 %) 119 (13.8 %)
False 313 (36.2 %) 72 (8.3 %)

(c) Folder 3: Accuracy: 67.7 %

Positive Negative
True 230 (33.6 %) 233 (34.1 %)
False 109 (15.9 %) 112 (16.4 %)

(d) Folder 4: Accuracy: 57.2 %

Positive Negative
True 224 (28.7 %) 222 (28.5 %)
False 168 (21.5 %) 166 (21.3 %)

Folder 1: Train accuracy 77.4 % for parameters c=2.0 g=0.5
Folder 2: Train accuracy 75.5 % for parameters c=8.0 g=0.5
Folder 3: Train accuracy 70.2 % for parameters c=2048.0 g=0.125
Folder 4: Train accuracy 73.3 % for parameters c=2048.0 g=0.125

Algorithm 2: Converting Authorship Verification to Attribution

This method was found to be unsuitable to solve Authorship Verification
problem. Average accuracy did not even exceed the baseline.

Algorithm 3: Converting Authorship Verification to Attribution using
Ranking instead of Score

With the last algorithm, the average accuracy was 71.3 %. If we consider short
lengths of documents, obtained results are good. Accuracy of this method
is 21.3 % better than the baseline and represents 13.5 % improvement over
algorithm 1). See detailed results in Table 2.

Performance Comparison: Word-Length Distribution

Word-Length approach published by T. C. Mendenhall in 1887 [11] is still used
in many current works. To compare our syntactic features with this approach,
we replaced them by the word-length distribution and then used the same
algorithms.

– Algorithm 1: Two-Class ML with Word-Length Features
Average accuracy is 53.2 %, which is only slightly better than the baseline.
Detailed results are shown in Table 3.

Authorship Verification based on Syntax Features 117

Table 2. Results of Algorithm 3

(a) Folder 1: Accuracy: 79.3 %

Positive Negative
True 691 (34.6 %) 894 (44.7 %)
False 106 (5.3 %) 309 (15.4 %)

(b) Folder 2: Accuracy: 64.3 %

Positive Negative
True 364 (18.2 %) 921 (46.0 %)
False 79 (4.0 %) 636 (31.8 %)

(c) Folder 3: Accuracy: 69.0 %

Positive Negative
True 481 (24.1 %) 899 (44.9 %)
False 101 (5.1 %) 519 (25.9 %)

(d) Folder 4: Accuracy: 72.8 %

Positive Negative
True 491 (24.6 %) 965 (48.2 %)
False 35 (1.8 %) 509 (25.4 %)

Folder 1: Train accuracy 88.9 % for parameters c=512.0 g=0.125
Folder 2: Train accuracy 88.2 % for parameters c=2048.0 g=2.0
Folder 3: Train accuracy 88.0 % for parameters c=8.0 g=2.0
Folder 4: Train accuracy 87.7 % for parameters c=8.0 g=2.0

Table 3. Results of Algorithm 1

(a) Folder 1: Accuracy: 52.9 %

Positive Negative
True 404 (44.9 %) 72 (8.0 %)
False 378 (42.0 %) 46 (5.1 %)

(b) Folder 2: Accuracy: 53.0 %

Positive Negative
True 358 (39.8 %) 119 (13.2 %)
False 331 (36.8 %) 92 (10.2 %)

(c) Folder 3: Accuracy: 50.1 %

Positive Negative
True 326 (36.2 %) 125 (13.9 %)
False 325 (36.1 %) 124 (13.8 %)

(d) Folder 4: Accuracy: 56.9 %

Positive Negative
True 358 (39.8 %) 154 (17.1 %)
False 296 (32.9 %) 92 (10.2 %)

Folder 1: Train accuracy 77.8 % for parameters c=8.0 g=0.125
Folder 2: Train accuracy 77.9 % for parameters c=2.0 g=0.5
Folder 3: Train accuracy 80.0 % for parameters c=2.0 g=0.5
Folder 4: Train accuracy 79.4 % for parameters c=8192.0 g=0.0078125

– Algorithm 3: Authorship Attribution with Rankings replacing Scores (with
Word-Length Features)

Average accuracy is 61.5 %. The train accuracies indicate that the machine
learning model is partially overfitted. The accuracy could be slightly in-
creased by further optimizations, involving heuristic selection of attributes,
but given described size of the learning set and lengths of documents,
word-length features are outperformed by our syntactic features. Results
are displayed in Table 4.

118 Jan Rygl, Kristýna Zemková, Vojtěch Kovář

Table 4. Results of Algorithm 3

(a) Folder 1: Accuracy: 62.7 %

Positive Negative
True 259 (12.9 %) 994 (49.7 %)
False 6 (0.3 %) 741 (37.1 %)

(b) Folder 2: Accuracy: 61.4 %

Positive Negative
True 229 (11.4 %) 998 (49.9 %)
False 2 (0.1 %) 771 (38.6 %)

(c) Folder 3: Accuracy: 62.2 %

Positive Negative
True 244 (12.2 % 999 (49.9 %)
False 1 (0.1 %) 756 (37.8 %)

(d) Folder 4: Accuracy: 59.8 %

Positive Negative
True 196 (9.8 %) 1000 (50.0 %)
False 0 (0.0 %) 804 (40.2 %)

Folder 1: Train accuracy 91.9 % for parameters c=2.0 g=2.0
Folder 2: Train accuracy 91.3 % for parameters c=2.0 g=2.0
Folder 3: Train accuracy 91.1 % for parameters c=8.0 g=2.0
Folder 4: Train accuracy 90.7 % for parameters c=8.0 g=2.0

6 Conclusions and Future Work

The primary aim of this paper was to present a syntactic approach to the
authorship verification task. Because, unlike other publications, we work with
texts consisting of up to tens of sentences, we have to cope with insufficiency of
qualitative and quantitative information. Despite the fact that the accuracy of
our method does not achieve desired results yet, the experiment indicates that
syntactic features can outperform established approaches.

Within the future work, our goal is to find another syntactic atributes to
add to our algorithms. We also plan combining syntactical and morphological
information together.

Acknowledgments

This work has been partly supported by the Ministry of the Interior of CR
within the project VF20102014003.

References

1. Malone, Edmond: A Dissertation on the Three Parts of King Henry VI. Tending to
Shew That Those Plays Were Not Written Originally by Shakspeare. Gale Ecco, Print
Editions (1787)

2. Kestemont, M., Luyckx, K., Daelemans, W., Crombez, T.: Cross-genre authorship
verification using unmasking. English Studies 93(3) (2012) 340–356

3. Manevitz, L.M., Yousef, M., Cristianini, N., Shawe-taylor, J., Williamson, B.: One-
class svms for document classification. Journal of Machine Learning Research 2
(2001) 139–154

Authorship Verification based on Syntax Features 119

4. Koppel, M., Schler, J.: Authorship verification as a one-class classification problem.
In: Proceedings of the twenty-first international conference on Machine learning.
ICML ’04, New York, NY, USA, ACM (2004) 62–

5. Hollingsworth, C.: Using dependency-based annotations for authorship identifica-
tion. In Sojka, P., Horák, A., Kopeček, I., Pala, K., eds.: Text, Speech and Dialogue.
Volume 7499 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2012) 314–319

6. Rygl, J., Horák, A.: Similarity ranking as attribute for machine learning approach
to authorship identification. In Chair), N.C.C., Choukri, K., Declerck, T., Doǧan,
M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., eds.: Proceedings of the
Eight International Conference on Language Resources and Evaluation (LREC’12),
Istanbul, Turkey, European Language Resources Association (ELRA) (2012)

7. Kovář, V., Horák, A., Jakubíček, M.: Syntactic analysis using finite patterns: A new
parsing system for czech. In Vetulani, Z., ed.: LTC. Volume 6562 of Lecture Notes in
Computer Science., Springer (2009) 161–171

8. Horák, A.: Computer Processing of Czech Syntax and Semantics. Librix.eu, Brno,
Czech Republic (2008)

9. Šmerk, Pavel: K počítačové morfologické analýze češtiny. PhD thesis, Faculty of
Informatics Masaryk University (2010)

10. Chang, Chih-Chung - Lin, Chih-Jen: LIBSVM: a library for support vector machines.
(2001) URL: http://www.csie.ntu.edu.tw/~cjlin/libsvm.

11. Mendenhall, T. C.: The characteristic curves of composition. The Popular Science 11
(1887) 237–246

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Segmentation from 97% to 100%
Is It Time for Some Linguistics?

Petr Sojka

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

sojka@fi.muni.cz

Abstract. Many tasks in natural language processing (NLP) require seg-
mentation algorithms: segmentation of paragraph into sentences, segmen-
tation of sentences into words is needed in languages like Chinese or
Thai, segmentation of words into syllables (hyphenation) or into morpho-
logical parts (e.g. getting word stem for indexing), and many other tasks
(e.g. tagging) could be formulated as segmentation problems. We eval-
uate methodology of using competing patterns for these tasks and decide
on the complexity of creation of space-optimal (minimal) patterns that
completely (100 %) implement the segmentation task. We formally define
this task and prove that it is in the class of non-polynomial optimization
problems. However, finding space-efficient competing patterns for real
NLP tasks is feasible and gives efficient scalable solutions of segmenta-
tion task: segmentation is done in constant time with respect to the size
of segmented dictionary. Constant time of access to segmentations makes
competing patterns attractive data structure for many NLP tasks.

Key words: competing patterns, segmentation, hyphenation, NP prob-
lems, pattern generation, patgen, context-sensitive patterns, machine
learning, natural language engineering

Everything is a symbol, and symbols can be combined to form patterns.
Patterns are beautiful and revelatory of larger truths. These are the central ideas

in the thinking of Kurt Gödel, M. C. Escher, and Johann Sebastian Bach,
perhaps the three greatest minds of the past quarter-millennium. (Hofstadter [1])

1 Introduction

Many tasks in NLP require segmentation algorithms: segmentation of paragraph
into sentences, segmentation of sentences into words is needed in languages
like Chinese or Thai, segmentation of words into syllables (hyphenation) or into
morphological parts (e.g. getting word stem for indexing), phoneme (speech)
segmentation, and many other tasks (e.g. tagging) could be expressed as
segmentation problems. Solution of segmentation task is an important brick
in every NLP framework.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 121–131, 2012. c○ Tribun EU 2012

mailto:sojka@fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2012.nlp-consulting.net/

122 Petr Sojka

As the available computing power steadily grows, new approaches recently
deemed impossible are becoming reality – empirical approaches are used for ma-
chine learning of language phenomena: from huge language data (corpora,
wordlists), language models and patterns are learnt by sophisticated algo-
rithms through machine learning techniques. As examples of this shift, successful
unsupervised learning of natural language morphology from language word
lists has been reported in [2], and as overviewed in [3], supervised learning ap-
proaches are very successful for various types of segmentation. These merely
statistical approaches work quite well for many tasks in the area of computa-
tional linguistics, and quickly reach above 90% efficiency in tasks such as part
of speech tagging, sentence segmentation, speech recognition or probabilistic
parsing. The main drawback of a solely statistical approach is that the results
of learning methods are usually not understandable by expert linguists, as the
language models are hidden in weights of synapses of neural nets or in zillions
of probabilities or conditioned grammar rules. It appears that going the “last
mile”, increasing the remaining few percent purely statistically is not feasible,
and ways to cover the remaining exceptions by usage of symbolic, linguistic
descriptions are being sought [4].

Recognition of patterns is considered as the central issue in intelligence. Ar-
tificial intelligence needs statistical emergence [5]: for real semantics, symbols
must be decomposable, complex, autonomous – active. A rule-based approach,
such as, when the results of the learning process are human-understandable
rules or patterns, allows for the merging of hand-crafted and machine learnt
knowledge. It is becoming clear that a close cooperation between computer sci-
entists and linguists is necessary [6] – both sides need each other. Neither rigor-
ous computational analysis and formal models nor linguistic introspection and
language models should be absent in successful approaches. First, symbolical
descriptions should be sought, and only when not sufficient a dice should be
drawn.

Patterns can be identified as a set of objects that share some common
property. During the emergence of patterns covering the rules in data, some
exceptions may occur. Remaining errors and exceptions covered in the first level
can be viewed again as set of objects and described by inhibiting patterns. The
next layer of covering patterns may describe the patterns in the data not handled
by previous rules, and so on. By this process, knowledge from the data can
be learnt, either by an automatic procedure, or by information fusion from
different sources.

There is plethora of methods of machine learning, data mining and knowl-
edge management. However, up to now, we are not aware of an system-
atic attempt made to deal with the large-scale exception handling that is so
widespread across linguistic data in machine learning methods and data min-
ing. This work is one of the first attempts to formalize and fully employ the
theory of competing patterns for the utilization of language data in the areas of
natural language processing and computer typesetting.

Segmentation from 97% to 100%: Is It Time for Some Linguistics? 123

2 Basic Notions

The two fundamental problems are pattern definition and pattern recognition/
generation from input data. There are many ways of formalizing patterns – sets
of objects sharing some recognizable properties (attributes, structure, . . .).

Definition 1 (pattern). By alphabet we mean a finite, nonempty set. Let us have
two disjoint alphabets Σ (the alphabet of terminals, called also called characters or
literals) and V (the alphabet of variables). Patterns are words over the free monoid
⟨(Σ ∪ V)*, ε, ·⟩. The length |ε| of an empty word ε is zero. Patterns having only
terminals are called terminal patterns or literal patterns. The length of a literal
pattern p, denoted by |p|, is the number of literals in it. The language L(α) defined by
a pattern α consists of all words obtained from α by leaving the terminals unchanged
and substituting a terminal word for each variable v. The substitution in our case has
to be uniform: different occurences of v are replaced by the same terminal word. If
the substitution always replaces variables by a nonempty word, such language LNE is
non-erasing, and such pattern is called NE-pattern. Similarly, we define an erasing
language LE as a language generated by an E-pattern such that substitution of variable
v by empty word ε is allowed.

The pattern SVOMPT for English sentences where the variables denote
Subject, Verb, Object, Mood, Place, Time may serve as an example of E-pattern.
A useful task is to infer a pattern common to all input words in a given sample
by the process of inductive inference. It has been shown by Jiang et al. [7] that
the inclusion problem is undecidable for both erasing and non-erasing pattern
languages. It is easy to show that the decidability of the equivalence problem
for non-erasing languages is trivial. The decidability status of the equivalence
problem for E-patterns remains open. These results show that trying to infer
language description in the form of a set of patterns (or the whole grammar)
automatically is very difficult task.

We focus our attention in the further study to literal patterns only.

Definition 2 (classifying pattern). Let A be alphabet, let ⟨A,≤⟩ be a partially
ordered system, ≤ be a lattice order (every finite non-empty subset of A has lower
and upper bound). Let . be a distinguished symbol in Σ′ = Σ ∪ {.} that denotes the
beginning and the end of word – begin of word marker and end of word marker.
Classifying patterns are the words over Σ′ ∪ V ∪ A such that dot symbol is allowed
only at the beginning or end of patterns.

Terminal patterns are “context-free” and apply anywhere in the classified
word. It is important to distinguish patterns applicable at the beginning and
end of word by the dot symbol in a pattern.1 Classifying patterns allow us to
build tagging hierarchies on patterns.

1 It is itmrnopt to dgtusisinh ptatren apcbliplae at the bngninieg and end of wrod by
the dot sobmyl in a ptarten.

124 Petr Sojka

Definition 3 (word classification, competing word patterns).
Let P be a set of patterns over Σ′ ∪ V ∪ A (competing patterns, pattern set). Let
w = w1w2 . . . wn be a word to be classified with P. Classification classify(w, P) =
a0w1a1w1 . . . wnan of w with respect to P is computed from a pattern set P by a
competing procedure: all patterns whose projection to Σ match a substring of w are
collected. ai is supremum of all values between characters wi and wi+1 in matched
patterns. classify(w, P) is also called the winning pattern.

It is worth noting that the classification procedure can be implemented very
efficiently even for large pattern bases. Its effectiveness depends on the data
structure where the patterns are stored. When an indexed trie is used, the
classification of a word can be realized in linear time with respect to the word
length |w| and does not depend on |P|.

Our motivation for studying of competing patterns was the word division
(hyphenation) problem. It is related to a dictionary problem – the problem
of effective storage of a huge word list. An enumerated list of Czech words
may have well above 6,000,000 words. Storage of such a large table even
using hashing requires considerable space. Another idea is to use finite-state
methods – finite-state automata and transducers. It has been shown that
decomposition of the problem by using local grammars [8] or building cascades
of finite state machines [9] is a tractable, even though very time-consuming task.
The main problem with these approaches is that they do not generalize well –
they do not perform well on unseen words. A structural decomposition of W
into patterns is the key idea here, and brings better generalization qualities:

Definition 4 (word division problem). Let W be a set of words over Σ ∪ {0, 1}
such that placing 1 between two letters in w denotes the possibility of word division
at that point (placing 0 or nothing means the opposite). We want to find pattern set P
such that winning patterns classify(w, P) encode the same information as w. In this
case we say that P or classify(w, P) covers w.

We want to find a pattern set that is minimal in size and maximal in
performance; we have to define these performance measures.

Definition 5 (precision, recall, F-score). Let W = (Σ ∪ {0, 1})*, and P a set
of patterns over Σ′ ∪ N. Let good(w, P) is the number of word divisions where
classify(w, P) covers w, good(W, P) = ∑w∈W good(w, P). bad(w, P) is the number
of word divisions where classify(w, P) classifies word division that is not in w,
bad(W, P) = ∑w∈W bad(w, P). missed(w, P) is the number of word divisions
where classify(w, P) fails to classify word division that is in w, missed(W, P) =
∑w∈W missed(w, P). The definition of the measures is then as follows:

precision(W, P) =
good(W, P)

good(W, P) + bad(W, P)
(1)

recall(W, P) =
good(W, P)

good(W, P) + missed(W, P)
(2)

Segmentation from 97% to 100%: Is It Time for Some Linguistics? 125

The precision and recall scores can be combined into a single measure,
known as the F-score [10]:

Definition 6 (F-score).

F(W, P) =
2 × precision(W, P)× recall(W, P)

precision(W, P) + recall(W, P)
(3)

An F-score reaches its maximum when both precision and recall is maximal;
in the case F(W, P) = 1 all information about word division is compressed into
the pattern base P.

Definition 7 (lossless compression, cross validation). If F(W, P) = 1 we say
that we losslessly compressed W into P. We can test performance of P on an unseen
word list W ′ to measure the generalization properties of pattern set P – in the machine
learning community, the term cross validation is used.

3 Generation of Minimal Patterns is Non-Polynomial Task

Here we see one advantage of the pattern approach. In the case where we have
solved the hyphenation problem by storing all the words with the division
point in a hash table or using a finite state transducer, we do not know how
to segment new, unseen words. On the other hand, pattern P trained on W can
perform well on unseen words (typically new long words or compounds) – as
in patterns the rules are generalized.

There are many pattern sets P that losslessly compress (cover) W; one
straightforward solution is having just one pattern for every word w ∈ W
by putting dot symbol around the word with division points marked by 1.
Such a pattern set P is a feasible solution. But we want to obtain minimal pattern
set. Minimality can be measured by the number of patterns, by the number of
characters in patterns, or by the space the patterns occupy when stored in some
data structure. Even if we take the simplest measure by counting the patterns,
and try to find a minimal set of patterns that cover W, we will show how hard
the task is. To formulate it more precisely, we need to define:

Definition 8 (minimum set cover problem). An instance of set cover problem is
finite set X and a family ℱ of subsets of X, such that X =

⋃
S∈ℱ S. The problem is to

find a set C ⊆ ℱ of minimal size which covers X, i.e. X =
⋃

S∈C S.

The minimum set cover problem (MSCP) is known to be in the class of NPO
problems (optimization problems analogical to NP decision problems), [11]. A
variant of MSCP, in which the subsets have positive weights and the objective
is to minimize the sum of the weights in a set cover, is also NPO. Weighted
version of minimum set cover problem is approximable within 1 + ln|X| as
shown by Chvátal [12].

126 Petr Sojka

Theorem 1 (pattern minimization problems). Let W be a set of words with one
division only. Problem of finding minimal number of patterns P that losslessly compress
W is equivalent to the (weighted) minimum set cover problem.

Proof. We show that the problem reduces to the minimal set cover problem. For
every subset C ∈ W there exists at least one feasible solution PC such that PC
covers C and does not cover any word in W r C, e.g., pattern set {.c.| c ∈ C}.
Between all such feasible solutions we choose a canonical representative P′

C –
a set which is smallest by some measure (e.g., number of patterns, or number
of characters in the pattern set). We now have a one to one correspondence
between all pattern sets that cover exactly C represented by P′

C and C. Thus
we showed that a pattern coverage minimization problem is equivalent to the
weighted minimum set cover [12] in NPO class.

We have shown that even a pattern covering problem without competition
is already NPO. When trying to cover W by competing patterns, complicated
interactions may arise – we need some approximation of the optimal solution.

Liang’s main concern in the pattern covering problem was the size of the
patterns stored in a packed trie (indexed trie with packing the different families
of the trie into a single large array in computer memory. He discusses NP-
completeness of finding a minimum size trie [13, page 25] by pointing to the
problem transformation from graph coloring by Pfleger [14].

Competing patterns extend the power of finite state transducer somewhat
like adding the “not” operator to regular expressions.

Methods for the induction of covering patterns from W are needed.
Attempts to catch the regularities in empirical data (W in our case) can

be traced back to the 1960s, when Chytil and Hájek started to generate unary
hypotheses on finite models using the GUHA method [15].

Definition 9 (matrix representation of the data). Let us have m × n matrix
W = wij of data that describe m objects with n binary attributes P1, P2, . . . , Pn (unary
predicates). Either Pj or ¬Pj holds. Elementary conjunction is a conjuction of literals
Pj, 1 ≤ j ≤ n, where every predicate appears once at most. Similarly, Elementary
disjunction is a disjunction of literals Pj with the same condition. We say that the
object i fulfills elementary conjunction Φ if the formula exactly describes the attributes
in line i of W. We say that Φ holds for W if Φ holds for all objects (lines in W). We say
that formula Φ is p-truth if Φ holds for at least 100p% of objects, p ∈ R, 0 < p ≤ 1.

We immediately see that we can represent our hyphenation problem by a
matrix W: the attribute in column j, Pj tells whether a word can be divided
(true or 1) or not (false or 0).

GUHA method searches for such elementary conjunctions A (antecedents)
and elementary disjunctions S (succedents) with no common predicates, such
that implication A → S is p-truth; it searches for hypotheses with highest p to
detect dependencies in data. Observational language in this case is propositional
logic. There are many general approaches using first-order predicate calculus or
even higher formalisms [16], but these are not necessary for our task.

Segmentation from 97% to 100%: Is It Time for Some Linguistics? 127

Definition 10 (p-truth pattern α). Let us have m hyphenated words represented in
matrix W as in Definition 9 on the facing page. We say that pattern α is p-truth
pattern if it covers at least 100p% of applicable word segmentation points.

The greedy approach for pattern search consists in collecting p-truth pat-
terns with the highest p of the shortest length. Short patterns give a high gener-
alization and good minimalization of space for pattern storage. But during its
generation some heuristics have to be used, as maximal coverage of covering
patterns does not imply good performace in the succeeding phases of pattern
generation (of inhibiting patterns). Further discussion on pattern preparation
could be found in [13,17,3].

4 Methods of Competing Patterns Generation

The idea of competing patterns is taken from the method developed by
Liang [13] for his English hyphenation algorithm. It has been shown by
extensive studies [18,19,20] that the method scales well and that parameters
of the pattern generator – PATGEN program [21] – could be fine-tuned so that
virtually all hyphenation points are covered, leading to about 99.9% efficiency.

The methodology consists of several parts:

stratification – for repetitive pattern generation, it is practical to have a
stratified word list with ‘information bearing’ samples only;

bootstrapping – input data (word list with marked hyphenation points) prepa-
ration;

goal-driven threshold setting heuristics – the quality of generated patterns
depends on many parameters that have to be set in advance;

data filtering by threshold setting heuristics – we can filter out ‘dangerous’
data – data that are hard to learn for manual inspection.

4.1 Stratification

Word lists from which patterns are generated may be rather big. A full list of
Czech word forms has about 6,000,000 entries when generated by the Czech
morphological analyzers ajka or majka. It may be even more than that for
other tasks with huge input data collections such as POS tagging, or Thai text
segmentation [22]. Context necessary for ambiguity resolution is often repeated
several times – a word list may be stratified. Stratification means that from
‘equivalent’ words only one or small number of representatives are chosen for
the pattern generation process.

With the stratification procedure described in [19] we have downsampled
3,300,000 Czech word forms to a word list of 372,562 word forms (samples) for
PATGEN input. The same approach was used also for Slovak.

Stratified sampling is less important when we insist on lossless compres-
sion, or when we have enough computing power for pattern generation.

128 Petr Sojka

4.2 Bootstrapping

The preparation of data for machine learning is often a time-consuming task
and for extremely large data sets, a technique called bootstrapping is used. It
was used for tagging the ORCHID corpus [22] and for tagging word divisions
it is also usefull. The idea is to tag only small initial data set (word list), and
generate patterns from this input. Then, these bootstrap patterns are used for
the automatic tagging of a bigger input list, and checked before the next pattern
generation phase.

Bootstrapping may bring errors especially with overlapping prefixes (ne-,
nej-, po-, pod-). It is worth the trouble marking these points separately, e.g.,
with the help of a morphological analyzer.

4.3 Pattern Generation

Pattern generation processes are driven by several threshold parameters whose
settings are essential for the quality and properties (precision and recall) of
generated patterns. Our experience shows that parameter setting not only
depends on the requested pattern behaviour but to a certain extent on the
problem at hand. Parameter setting has to be tuned for every pattern generation
project.

PATGEN runs at various levels. At every level, a new set of patterns is
generated. It starts with short patterns (counting frequencies of substrings of
a given length), generating longer ones in the next level as ‘exceptions’, and
making ‘exceptions of exceptions’ in the next level, etc. With this model, we
can learn exact dependencies between contexts of hyphenation points in words
that are used in a much wider context than can standard (bi|tri)gram or other
statistical methods taken into consideration – there are examples when the
segmentation decision depends on the word segment that is six characters
away.

There is no known algorithm that helps with setting of the parameters of the
learning process. Liang’s original patterns (hyphen.tex) that are in every TEX
distribution as a default patterns for (American) English are very inefficient
and have very low recall. They cover only 89.3% [13, page 37] – of very small
word list (Webster’s Pocket Dictionary) of 49,858 words. The threshold used in
pattern generation were not tuned at all, and better choices can lead to smaller
pattern size and higher (actually complete) coverage of hyphenation points in
an input word list.

4.4 Pattern Parameter Setting Optimization

Our extensive experience shows that parameter setting is highly language
dependent – it differs when generating patterns for Thai segmentation [22]
for Czech and Slovak hyphenations [19] Scannel [23] reports that using this
methodology he generated a new pattern for Irish that does not produce any
hyphen points which are not in the database and miss just 10 out of 314,639

Segmentation from 97% to 100%: Is It Time for Some Linguistics? 129

hyphen points. This is consistent with our findings that the methodology is
usable as very effective lossless compression algorithm, and there is the power
of competing patterns to cover all exceptions from data.

We may experiment with parameter setting so that generated patterns are
nearly lossless. Words that were not covered in this phase are in some way
different than the rest. This difference may well be right, but usually show an
input data tagging error. We suggest manually checking this small set of words
esspecially when developing and marking new word lists from scratch.

4.5 Layering of Disambiguation Patterns

There can be a different version of the input data (different variants of
segmentation, tagging), with different patterns. As competing patterns are
decomposable into layers, we can “plug-in” patterns developed by experts on
the problem and merge or compare them with those generated. We can let the
patterns “compete” – or adjust them so that, for example, expert knowledge
takes preference over generated patterns, or we can take the expert patterns as
initial set of patterns and generate the patterns to cover the rest of the input
data. It has been shown [19] that hyphenation patterns were often done by
hand, or by a combination of hand crafted and generated patterns. Having
several layers of expert patterns, we can easily set up their priorities by
changing the classification numbers in the patterns. This priority handling is
necessary in most information fusion tasks.

5 Summary and Conclusions

In this paper, we have formally proved the hardness of creation of space-
optimal competing patterns for segmentation tasks. Even though the theoretical
result seems negative, in practical applications like hyphenation, we are still
able to find space efficient patterns that are able to solve segmentation task in
constant time, e.g. irrespectively of the number of segmented inputs.

Techniques like bootstrapping, stratification and parameter generation set-
ting heuristics allows for efficient working with language data to be seg-
mented – a work for language experts. Fixing errors in data then allows for
better and smaller pattern sets that are close to the theoretical optimum.

This all opens new horizons on usage of competing patterns as a new
compact data structure in many NLP tasks.

Acknowledgements This work has been partially supported by the European
Union through its Competitiveness and Innovation Programme (Information
and Communications Technologies Policy Support Programme, “Open access
to scientific information”, Grant Agreement No. 250503).

130 Petr Sojka

References

1. Hofstadter, D.R.: Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books (1979)
2. Goldsmith, J.: Unsupervised Learning of the Morphology of a Natural Language.

Computational Linguistics 27(2) (2001) 153–198
3. Sojka, P.: Competing Patterns in Language Engineering and Computer Typesetting.

PhD thesis, Masaryk University, Brno (2005)
4. Manning, C.: Part-of-Speech Tagging from 97% to 100%: Is It Time for Some Lin-

guistics? In Gelbukh, A., ed.: Computational Linguistics and Intelligent Text Pro-
cessing, 12th International Conference CICLing 2011, Part 1, LNCS 6608, Springer
(2011) 171–189

5. Hofstadter, D.R.: Artificial intelligence: Subcognition as computation. (1983)
6. Brill, E., Florian, R., Henderson, J.C., Mangu, L.: Beyond N-Gram: Can Linguistic

Sophistication Improve Language Modeling? In: Proceedings of the ACL ’98. (1998)
7. Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. Journal

of Computer and Systems Sciences 50(1) (1995) 53–63
8. Gross, M.: The Construction of Local Grammars. [24] 329–354
9. Hobbs, J.R., Appelt, D., Bear, J., Israel, D., Kameyama, M., Stickel, M., Tyson,

M.: FASTUS: A Cascaded Finite-State Transducer for Extracting Information from
Natural-Language Text. [24] 383–406

10. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press (1999)

11. Ausiello, G., Gambosi, G., Crescenzi, P., Kann, V.: Complexity and Approximation.
Springer-Verlag (1999)

12. Chvátal, V.: A Greedy Heuristic for the Set Covering Problem. Mathematics of
Operations Research 4 (1979) 233–235

13. Liang, F.M.: Word Hy-phen-a-tion by Com-put-er. PhD thesis, Department of
Computer Science, Stanford University (1983)

14. Pfleger, C.P.: State Reduction in Incompletely Specified Finite-State Machines. IEEE
Trans. Computers C 22(4) (1973) 1099–1102

15. Hájek, P., Havránek, T.: Mechanising hypothesis formation – Mathematical founda-
tions for a general theory. Springer-Verlag (1978)

16. Lloyd, J.W.: Learning Comprehensible Theories from Structured Data. In Mendel-
son, S., Smola, A., eds.: Advanced Lectures on Machine Learning, LNAI 2600. (2003)
203–225

17. Sojka, P.: Competing Patterns for Language Engineering. In Sojka, P., Kopeček,
I., Pala, K., eds.: Proceedings of the Third International Workshop on Text, Speech
and Dialogue—TSD 2000. Lecture Notes in Artificial Intelligence LNCS/LNAI 1902,
Brno, Czech Republic, Springer-Verlag (2000) 157–162

18. Sojka, P., Ševeček, P.: Hyphenation in TEX – Quo Vadis? TUGboat 16(3) (1995)
280–289

19. Sojka, P.: Notes on Compound Word Hyphenation in TEX. TUGboat 16(3) (1995)
290–297

20. Sojka, P.: Hyphenation on Demand. TUGboat 20(3) (1999) 241–247
21. Liang, F.M., Breitenlohner, P.: PATtern GENeration program for the TEX82 hyphenator.

Electronic documentation of PATGEN program version 2.3 from web2c distribution on
CTAN (1999)

22. Sojka, P., Antoš, D.: Context Sensitive Pattern Based Segmentation: A Thai Chal-
lenge. In Hall, P., Rao, D.D., eds.: Proceedings of EACL 2003 Workshop on Compu-
tational Linguistics for South Asian Languages – Expanding Synergies with Europe,
Budapest (2003) 65–72

Segmentation from 97% to 100%: Is It Time for Some Linguistics? 131

23. Scannell, K.P.: Hyphenation patterns for minority languages. TUGboat 24(2) (2003)
236–239

24. Roche, E., Schabes, Y.: Finite-State Language Processing. MIT Press (1997)

Author Index

Baisa, Vít 69

Dovudov, Gulshan 91
Duží, Marie 33

Gardoň, Andrej 43
Grác, Marek 105

Hlaváčková, Dana 9
Horák, Aleš 51

Jakubíček, Miloš 23, 51

Kocincová, Lucia 15
Kovář, Vojtěch 23, 51, 111

Materna, Jiří 97
Medved’, Marek 23

Menšík, Marek 33

Němčík, Vašek 3, 23
Nevěřilová, Zuzana 61

Pala, Karel 9

Rambousek, Adam 105
Rychlý, Pavel 85
Rygl, Jan 111

Sojka, Petr 121
Suchomel, Vít 69, 77, 91
Šmerk, Pavel 91

Vích, Lukáš 33

Zemková, Kristýna 111

RASLAN 2012
Sixth Workshop on Recent Advances in Slavonic Natural
Language Processing

Editors: Aleš Horák, Pavel Rychlý
Typesetting: Adam Rambousek
Cover design: Petr Sojka

Printed and published by Tribun EU s. r. o.
Cejl 32, 602 00 Brno, Czech Republic

First edition at Tribun EU
Brno 2012

ISBN 978-80-263-0313-8

www.librix.eu

http://www.fi.muni.cz/usr/sojka
http://www.librix.eu

	I Syntax, Morphology and Lexicon
	Saara: Anaphora Resolution on Free Text in Czech
	Behaviour of the Czech Suffix -ák – A Case Study
	Reproducing Czech Syntactic Parsing Results Published in CoNLL Tasks
	Adaptation of Czech Parsers for Slovak

	II Logic and Language
	Deduction System for TIL-2010
	Czech Knowledge-Based System with Temporal Reasoning
	Linguistic Logical Analysis of Direct Speech
	Building Evaluation Dataset for Textual Entailment in Czech

	III Text Corpora and Tools
	Detecting Spam Content in Web Corpora
	Recent Czech Web Corpora
	CzAccent – Simple Tool for Restoring Accents in Czech Texts
	Towards 100M Morphologically Annotated Corpus of Tajik

	IV Language Modelling
	Building A Thesaurus Using LDA-Frames
	Improving Automatic Ontology Developement
	Authorship Verification based on Syntax Features
	Segmentation from 97 to 100: Is It Time for Some Linguistics?

