
Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 1 

The Preposition Corpus in Sketch Engine 

Ken Litkowski 

CL Research 

9208 Gue Road 

Damascus, MD 20872 USA 

ken@clres.com 

 

Abstract 

Corpora from the Pattern Dictionary of English Prepositions (PDEP) provide the basis for examining 

the behavior of 304 English prepositions, with 1040 senses (patterns) describing in 20 fields. The 

PDEP corpora comprise dependency parses for 81,509 sentences in CoNLL-X format, previously 

used in several studies, particularly used for disambiguation modeling. We have now put these parse 

data into Sketch Engine (SE), using its mechanisms for further perspectives of preposition behavior. 

In the process, we have also annotated each parse with additional information that provides an even 

richer set of data to examine preposition behavior. For each sentence, Sketch Engine identifies the 

sense number and the direct link location to the PDEP sense description; these references can be 

displayed for each concordance line. Sketch Engine data for each sentence also includes the PDEP 

class, the subclass, and supersense tags for the preposition complements and governors (i.e., 

semantic relations using the WordNet lexicographer file class). 

We describe in detail how the corpora were prepared for SE, involving several scripts used in PDEP 

to access its databases. Some of these scripts provide additional entry points into the PDEP data, 

particularly for the class and subclass. We describe the use of WordNet noun, verb, adjective, and 

adverb supersenses to tag the complements and governors, i.e., semantic word sketches for the 

prepositions. The resultant preposition data within SE provides a perspective different from its usual 

focus on the main parts of speech, so we describe the unique aspects enabled for the PDEP corpora 

in considerable detail. We describe several corpus query language (CQL) queries that provide useful 

perspectives on preposition behavior, particularly showing preposition collocations, (semantic) word 

sketches, preposition thesauruses, and preposition sketch differences. 

1. Introduction 

The Pattern Dictionary of English Prepositions (PDEP) (Litkowski, 2014; Litkowski, 2017) provides a 

comprehensive set of data for describing preposition behavior. This behavior is captured in individual 

patterns that generally correspond to senses in the Oxford Dictionary of English (Stevenson and Soames, 

2003). The Preposition Project (TPP) (Litkowski and Hargraves, 2005; Litkowski, 2013) provided 

sentences exemplifying preposition behavior and were tagged with senses; in many cases, this tagging 

resulted in an expansion of the sense inventory. The tagged instances have been used as the basis for 

characterizing preposition behavior in individual patterns, containing up to 20 properties for each sense. 

PDEP provides several online routines to examine the properties of each sense. Importantly, the tagging 

has been used for the development of support-vector machine models for preposition disambiguation. 

These models have suggested shortcomings in disambiguation and has led to more detailed examination 

http://www.clres.com/db/TPPEditor.html


Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 2 

of the importance of individual features (Litkowski, 2017). An important aspect of these studies has been 

the need to examine features across prepositions in the same class and subclass.  

Sketch Engine1 (SE) provides several mechanisms for examining comprehensive perspectives for the 

PDEP corpora. SE generally focuses on word sketches for the main parts of speech (noun, verb, adjective, 

and adverb), but does not usually provide methods for describing prepositions. With the help of SE staff 

and a combination of SE methods and various PDEP publicly scripts, we have implemented into Sketch 

Engine that will enable several techniques for examining preposition behavior. 

In section 2, we describe the English Preposition Corpus in Sketch Engine and the procedures by which it 

was generated from PDEP parses and various PDEP scripts; details of the Python script used to generate 

the vertical file are given in the appendix. Section 3 describes the idiosyncrasies in Sketch Engine from 

having a corpus that focuses on prepositions. This section focuses on searching for prepositions, 

particularly the use of the corpus query language, describing preposition collocations, and examining 

semantic word sketches for preposition complements and governors. This section also shows the use of 

preposition word sketches via dependency relations and semantic preposition relations. This section also 

describes Sketch Engine preposition thesauruses and word sketch differences between pairs of 

prepositions. Section 4 describes how Sketch Engine can be used to enter data into PDEP patterns, 

characterizing the behavior of individual senses, looking at complements and governors, and examining 

characteristics of PDEP classes and subclasses. Section 5 describes some general observations of 

preposition behavior afforded by Sketch Engine, on high preposition collocates, variations in 

prepositional tagging from parses, and infelicities in contexts. 

2. Source of Sketch Engine English Preposition Corpus 

Each sentence in the TPP corpora was parsed using the Tratz parser (Tratz and Hovy, 2011), with output 

in the CoNLL-X format. This format consists of a line for each token in a sentence. Each token is 

characterized by 14 tab-separated fields, of which only six are used in the parse output for the data 

entered into Sketch Engine. In the CoNLL-X format, a blank line is used to separate the sentences. The 

fields that are present in the parse output are the token number (starting at 1 for each sentence), the token 

itself, the lowercased lemma for the token with an appended one-character identification of the major part 

of speech, a part of speech tag for the token (slightly modified from the Penn Treebank tag set), the token 

number of the token upon which the instant token is dependent, and the dependency relation for the token. 

Files in this format are called vertical files. 

For PDEP, a vertical file was created for each preposition in each TPP corpus2. These files form the basis 

for the construction of the vertical files uploaded to the sketch engine. The source parse data, in the 

vertical file format, contains no identifier information. To provide such linkages, additional PDEP data 

was used from two scripts, both containing identifying numbers, one obtaining the raw sentences with the 

location of the focus preposition and one obtaining the locations of the complement and the governor 

associated with the sentence. This information was used to generate a new vertical file, with some added 

attributes for each sentence, in a Python script, described in Algorithm 1. 

                                                           
1 http://www.sketchengine.co.uk 
2 These files are available at http://www.clres.com/db/parses/. 

http://www.sketchengine.co.uk/
http://www.clres.com/db/parses/


Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 3 

Algorithm 1 Sketch Engine Vertical Files 

Input: List of parse files 
Input: Class, subclass, and supersense dictionaries 
Output: Sketch engine vertical files 
1: Read list of parse files 
2: For each file, do 
3:  Get dependencies for preposition  
4:  Get content for each dependency 
5:   Get sentences for corpus, preposition, sense 
6:   Match sentence in corpus vertical file 
7:    Note position for each dependency 
8:    Create new vertical file with annotations 
9:     Get positions of preposition, complement, governor 
10:   Get class and subclass for preposition sense 
11:   Annotate lemma part of speech 
12:   Identify supersense tag for complement, governor 
13:   Print vertical file for sentence 

 

The subdirectories at the parse link provide a list of the parse files for each corpus; each subdirectory was 

saved as a list and used to identify the corpus name and each preposition with a parse file in that corpus. 

This is line 1 in Algorithm 1. Each preposition sense in PDEP has a TPP class and subclass. Since each 

sentence in the corpora has a sense tag, the class and subclass will be added to the sentence structure in 

the sketch engine files. This data is obtained from a PDEP script3 and placed in a dictionary used during 

the creation of the sketch engine vertical file. This dictionary is part of line 2 of the algorithm. 

Following McCarthy et al. (2014), we have used the resources of the SuperSense Tagger (SST, Ciaramita 

and Altun, 2006) to annotate the content words of the complements and governors in the PDEP data. 

These tags identify the WordNet lexicographer class, a set of 46 classes used for organizing WordNet 

synsets. As used in SST, the most frequent WordNet class is used as the tag. SST essentially performs a 

coarse word sense disambiguation. As McCarthy et al. notes, accurate WSD is not critical, and it is likely 

that individual errors in disambiguation will be filtered out as noise when examining the tags in the sketch 

engine. For this tagging, we created a dictionary (part of line 2) of the lemmas in each of four “gazetteer” 

files from SST (one for each major part of speech), where we appended a part of speech code to each 

lemma (e.g., to distinguish nouns from verbs) to facilitate lookup for a lemma-POS combination in the 

creation of the sketch engine vertical files. 

Steps 1 and 2 of the algorithm read the list of files for a corpus and process each one in turn, creating a 

vertical file for the entire set of prepositions in each corpus. Each item in the list corpus is a file 

containing the dependency parses for each sentence that has been processing. These yields three vertical 

files, each of which is uploaded into the sketch engine; these files are then used as the basis for compiling 

and configuring the SE for the combined corpus. We describe the major steps of the algorithm in the 

following subsections. 

 

                                                           
3 http://www.clres.com/db/prepclas.php 

http://www.clres.com/db/prepclas.php


Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 4 

2.1. Getting the Dependencies for the Preposition 

Step 3 gets the dependencies for the instances of the preposition in each corpus, using a PDEP script.4 

This script is used in PDEP to highlight in color the complements and governors of each sentence. This 

script is important here because it identifies (in JSON format) the sense, the instance number, and the 

starting positions and lengths of the complement and the governor when these are available 

(approximately 92 percent of the time). The instance number is most important because it provides a 

linking mechanism used in subsequent steps. The locations of the complement and the governor will be 

used in a subsequent step in identifying where to put structure tags for these elements in the new vertical 

file. 

The list of dependencies provides the iterate for getting the content (step 4) for each instance. This first 

entails getting the sentences (step 5) for the specific sense of the preposition in the given corpus. This step 

also makes use of a PDEP script.5 This script returns (in JSON format) the preposition, the source, the 

sense, the instance number, the sentence, and the 0-based position of the preposition. This script is used in 

PDEP to display the corpus instances for a given preposition, corpus, and sense. Here, the instance 

numbers between the dependencies and the sentences are linked, serving as the basis for further 

processing. 

2.2. Matching the Sentence in the Corpus Vertical File 

As indicated above, the parse files in CoNLL-X format do not identify the sentence instance numbers. All 

sentences in a preposition’s parse file are read into tokenized structures corresponding to the fields in 

these files. Step 6 of the algorithm examines the “plain sentence” corresponding to the tokenized 

structure, i.e., the words are concatenated into a single string with no spaces. The matching process looks 

at the sentences from step 5, correspondingly stripped of all spaces, until it finds the one that matches the 

plain sentence. 

When the match is found, the positions of the preposition, the complement, and the governor are 

annotated into the matching raw sentence (as obtained from step 5). First, the sense from the raw sentence 

is noted (for later use), along with the location of the preposition and its length. Next, new sentences are 

created for each of the three components; making use of the location and length information, structure 

tags are added to the raw sentence, i.e., <prep>, <compl>, and <gov>. Along with the plain sentence and 

preposition sense, these three tagged sentences are passed to the routine to create the vertical file entry for 

this sentence (step 8). 

2.3. Identifying the Token Positions of the Preposition, the Complement, and the Governor 

The first step in creating the vertical file entry for a sentence involves an attempt to locate the starting and 

ending token positions of the preposition, the complement, and the governor. Each of these uses the same 

routine to identify where to include the component. This routine (step 9) strips each word from the plain 

sentence and the tagged sentence until a tag is encountered, enabling the return of the starting and ending 

positions of the tag. 

                                                           
4 An example is http://www.clres.com/db/getDeps.php?corp=FN&prep=about 
5 An example is http://www.clres.com/db/prepsents.php?source=FN&prep=above&sense=1(1) 

http://www.clres.com/db/getDeps.php?corp=FN&prep=about
http://www.clres.com/db/prepsents.php?source=FN&prep=above&sense=1(1)


Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 5 

2.4. Annotating the Tokens (Class, Subclass, and Part of Speech) 

After finding the positions of the three components, we next look up the preposition and sense in the class 

and subclass dictionary to obtain the values to be placed in the new vertical file (step 10). Using the part 

of speech tags in the CoNLL-X vertical file, we append a one-letter part of speech code to each noun, 

verb, adjective, or adverb lemma (step 11). These are used when the new vertical file is printed. 

2.5. Printing the New Vertical File 

Step 13 prints the new vertical file, which includes all the information from the original CoNLL-X 

vertical files, but with various added information. The new information adds XML structures, sometimes 

with attributes, in creating the new files. Each preposition is contained in a <doc> structure; the opening 

tag contains a corpus attribute that identifies the corpus and a preposition attribute that identifies the 

preposition. Each sentence is contained in a <s> structure. This structure includes (1) a sense_label 

attribute containing the PDEP sense number (e.g., “1(1)”), (2) a class attribute containing the TPP class 

(e.g., “Activity”), (3) a subc attribute containing the TPP subclass (e.g., “Proposed”), (4) an inst attribute 

containing the instance number of the sentence in the corpus, and (5) a sense_desc attribute containing a 

link to the PDEP pattern6 for the given sense (allowing a Sketch Engine user to examine the behavioral 

properties for the sense). The information in these structures will allow more targeted examination of a 

preposition’s properties in Sketch Engine. 

After the identifying information, the new vertical file contains a line for each token in the sentence, 

corresponding to these tokens in the original CoNLL-X vertical files. Each line is collapsed slightly from 

the original, containing six fields (as identified above). Additional lines are interleaved into the original 

lines to provide structure tags for the three main components: (1) a preposition tag (<prep>) surrounding 

the lines for the preposition (which may include more than one line for phrasal prepositions), (2) a 

complement tag (<compl>) around the line identifying the preposition complement, and (3) a governor 

tag (<gov>) around the line identifying the preposition governor. 

The complement tag and the governor tag may include an sst (supersense tag) attribute. This tag is 

identified in step 12 of the algorithm, where possible. For example, a complement “withdrawing” with the 

part of speech VBG (a verb gerund) has the lowercased lempos field “withdraw-v”; accessing the 

supersense dictionary for this sense yields the tag “verb.motion” which is recorded as the sst attribute for 

the compl structure. Many complements and governors will not have sst attributes; e.g., personal 

pronouns will not have an sst attribute. 

Running the Python script for the three corpora results in three vertical files, one for each corpus. These 

are uploaded to the sketch engine and compiled into a form ready for searching and other sketch engine 

functions. The script generates 80,369 sentences, compared to 81,509 sentences listed in PDEP. The 

Python script identifies problematic cases, written to separate files; these have not yet been examined in 

detail. 

 

 

                                                           
6 An example is http://clres.com/db/TPPpattern.php?prep=on%20the%20point%20of&sense=1(1) 

http://clres.com/db/TPPpattern.php?prep=on%20the%20point%20of&sense=1(1)


Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 6 

3. Examining the English Preposition Corpus in Sketch Engine 

Since prepositions are not normally a focus of investigation in Sketch Engine, we describe additional 

perspectives on preposition behavior made possible with this corpus. In general, the functionality in 

Sketch Engine is accompanied by help pages which provide considerable detail. These are provided by 

means of a help icon containing a question mark; clicking on the icon opens a help page in a separate 

window. These help pages will supplement what is described below for the preposition corpus. 

The preposition corpus is described in SE in the menu item “Corpus info”. This shows that the corpus 

was generated using 571 files from three corpora and 289 prepositions. The corpus contains 80,369 

sentences, 2.43 million tokens, and 2.14 million words. The corpus contains 95,272 distinct words 

(84,058 distinct lowercase words) and 61,330 distinct lemmas. The corpus contains 46 distinct 

grammatical tags and 50 distinct dependency relations (deprels). This page also has a link to a corpus 

description (this document) and to a description of the dependency relations (the syntactic dependency 

guide appendix in Tratz (2011)). 

Each sentence structure (<s>) contains one of 14 class labels, one of 67 subclass (subc) labels, an instance 

number, the PDEP sense label, and a sense description (sense_desc) which provides a link to its PDEP 

pattern. In most of the sentences, a structure is given for the preposition (<prep>, in 80,363 sentences), 

the preposition complement (<compl>, 73,692 sentences), and the governor of the prepositional phrase 

(<gov>, 74,900 sentences). Where available, the compl and gov structures contains a supersense (sst) tag, 

45 possible values for the compl and 46 possible values for the gov. 

An important consideration in examining the preposition corpus is an understanding of its 

representativeness. The corpus is described in detail in Litkowski (2013). The whole corpus is not 

representative. Each of the constituent corpora must be considered on its own. The CPA corpus is the 

most representative, but only for its individual prepositions. For example, both amid and after have 250 

instances, but these correspond to 681 and 42366 instances in the British National Corpus, respectively. 

The OEC corpus attempts to include 20 instances for each sense in ODE, but these are not representative 

for the particular sense and the full sense inventory for a single preposition cannot be considered 

representative. The FrameNet corpus is drawn from instances intended to illustrate particular frames and 

frame elements; these are frequently skewed in the number of instances for particular frames. 

Notwithstanding these concerns, and taking them into account while performing searches, the results from 

examining are likely to yield important behavioral characteristics. 

There are several mechanisms in SE for examining the corpora. These include Search, Word list, Word 

sketch, Thesaurus, and Sketch difference. We focus on aspects that are particularly useful for examining 

preposition behavior. 

3.1. Searching the Corpus 

SE provides a form for specifying the parameters of a search to make a concordance. The bare form 

consists only of a text box for entering a simple query, as shown in Figure 1. The form can be expanded 

to enable a more advanced specification for Query types (as shown), Context, and Text types. For the 

most part, the Context will not likely to be used; the Text types may be used to circumscribe the 

concordance and will frequently be used in CQL queries. 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 7 

 

Figure 1. Query Form 

When a query is performed, the result is a concordance that identifies all occurrences of a word or a 

phrase, as shown in Figure 2. The default displays 20 occurrences per page, each of which highlights the 

matches to the query. Above the instances is a simple identification of the query and the number of hits. 

(In parentheses, there is an identification of the number of hits per million; this is computed as the number 

of occurrences of the search term, divided by the number of tokens in the corpus. This denominator is 

used for phrases as well, i.e., not considering that the phrase consists of multiple words. As mentioned 

above, the number of hits should not be taken as representative.) Finally, there is a circled “i”, which, 

when clicked, gives a detailed specification of the query parameters. The specification is linked and will 

bring up the query form with the specification in the CQL field. 

 

Figure 2. Search Results 

The available query types are simple, lemma, phrase, word, character, and CQL (corpus query 

language specification).  The simple and phrase queries perform essentially the same, finding all 

occurrences of what is entered. Since prepositions are not inflected, use of lemma, word, and character 

do not seem to provide any benefit, although they may be useful when examining other aspects of the 

surrounding context. When a preposition is entered as a simple query, without any further specification, 

the entire corpus is searched, without regard to where it occurs, frequently beyond the sentences that were 

identified in the preposition corpora for the specific preposition. A frequency analysis on the document 

corpus or preposition will show the extent to which the preposition is distributed across the corpora and 

the preposition files. The CQL query will be described in more detail below; this is important in 

characterizing the preposition queries. 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 8 

When a concordance is constructed, a set of menu options is displayed. For the preposition corpus, View 

options, Frequency, and Collocations are the most relevant for characterizing preposition behavior. 

The View options first identify how the concordance is to be displayed, either as KWIC (key word in 

context) so that the key words are aligned or as Sentence to display exactly the sentences for the corpus 

instances (as in Figure 2). Other View options (Figure 3) will identify what attributes, structures, and 

references are displayed. Usually, the word attribute is shown so that the concordance will display the 

words of a sentence; other attributes can be indicated (e.g., lempos, tag, and deprel), perhaps to show all 

tokens and/or as tooltips. If the Structures are selected, the affected words will be shown. For the 

References selected in Figure 3, the blue script to the left of a sentence displays the references (as in the 

example of Figure 2). When a concordance line is selected (to its left), a full display of the references is 

given, as in Figure 4. Several of these items are significant: (1) two lines identify the preposition and the 

corpus from which this sentence was taken; (2) a line identifies the sense number with which this 

sentence has been tagged; (3) a line provides a clickable link to PDEP and the PDEP pattern details for 

this sense; and (4) the class and subc lines identify the class and the subclass to which this sentence has 

been assigned. 

 

Figure 3. View Options 

 

Figure 4. Concordance References 

Under the Frequency option, the Multilevel frequency distribution shows selected attributes and 

position related to the node position and the Text type frequency distribution examines the distribution 

of the search result over various structure attributes. The sub-items for Frequency are Node tags, Node 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 9 

forms, and Text types. Since the node tags and forms when the node is the preposition, the values for 

these are essential just frequencies, with no variation. When Text types is selected, all structures are 

shown, as in Figure 5. 

 

Figure 5. Text Types Frequency for “abaft” 

When the preposition has several senses, classes, subclasses, and corpus instances, Figure 5 will provide a 

comprehensive summary of the preposition characteristics. However, when the node specifies a 

preposition, the complement or governor supersense tags is not identified. For the supersense tags, the 

frequencies will be generated only when the search is looking at the complements or the governors (using 

CQL searches for these items). The resulting table has three columns: the structure attribute, the 

frequency, and the relative frequency. The relative frequency of the search result compares the frequency 

of the specific text type to the whole corpus. Since this corpus is not subdivided into the usual text types 

involved in this type of analysis (e.g., “spoken” versus “written”), the relative frequency is not a useful 

statistic. As an example, Figure 6 shows the frequency of the supersense tags occurring two or more times 

for the 53 complements of atop in the subclass “Above”. 

 

Figure 6. Complement Supersenses for "atop" 

Under the Frequency option, the Multilevel frequency distribution can be used to examine various 

phrasal combinations that occur in conjunction with the search result. This can include an examination of 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 10 

the word, lemma, tag, or dependency relation (deprel) in up to four positions relative to the node result. 

We have not often used these frequency distributions. 

Similar results can be examined under the Collocations option, which will also rank each collocation 

candidate with a statistic. When SE has generated a concordance, it can be examined in more detail via 

the Collocations option. This form provides options to specify the attribute, the range, the minimum 

frequency, the scoring functions, and the score used to sort the results for collocation candidates. The 

attribute can be the word, the lemma, the tag, the head, the deprel (dependency relation), the lowercased 

word, and the lowercased lemma. Of these, the deprel seems most informative for the preposition 

corpus, along with the use of the logDice score for sorting the results. The logDice score is considered to 

be the most useful, 

 
𝑙𝑜𝑔𝐷𝑖𝑐𝑒=14+𝑙𝑜𝑔2 

2𝑓𝑥𝑦

𝑓𝑥 + 𝑓𝑦
 (1) 

where fx is the number of occurrences of the keyword that gave the concordance, fy is the number of 

occurrences in the collocate in the whole corpus (referred to as the candidate count for the attribute being 

examined), and fxy is the number of occurrences of the collocate (the co-occurrence count). 

This statistic measures the occurrence of a particular attribute within the search result compared to the 

occurrence of the attribute within the total corpus. Even though the total preposition corpus is not 

considered representative, it is likely that the results for the individual attributes are reasonably 

meaningful. (Similar results can be obtained from the Word sketch option, although it will not be able to 

examine collocations for phrasal prepositions.) 

3.1.1.1. Query Language (CQL) 

The CQL search option provides an ability to perform more detailed searches; this is important in 

specified the preposition instead of just using the simple or phrase query form. A description of how a 

CQL search is specified is available to the Sketch Engine site.7 CQL basics provide syntax using brackets 

for words and attributes. For the most part, the preposition corpus will use CQL search structures, 

particularly focused on <prep>, <compl>, and <gov> structures. The following bullets identify useful 

CQL structures for prepositions. 

¶ <prep> [] </prep>: This is the most general global search. It will create a concordance of all the 

instances that have been tagged in a prep structure. However, this tag does not surround phrasal 

prepositions, so it only forms the concordance for single preposition tokens (55,288 sentences). 

¶ <prep> []+ </prep> within <s/>: To retrieve phrasal prepositions, i.e., having more than one or 

any tokens (“[]+” or “[]{1,4}”) in the structure as well (80,344 sentences), but will cross sentence 

boundaries (which can be eliminated by specifying “within <s />”). 

¶ <prep> [word="in" | word="after"] [word="the"] [word="fashion"] [word = "of"] 

</prep> within <s />: We can enter specific words inside the brackets to retrieve just the 

sentences for a specific preposition; we can also enter Boolean expressions to retrieve the 

sentences for multiple prepositions. 

                                                           
7 https://www.sketchengine.co.uk/documentation/corpus-querying/ 

https://www.sketchengine.co.uk/documentation/corpus-querying/


Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 11 

¶ <prep> []+ </prep> within <doc corp="cpa"/> within <s prep="across"/> within <s 

sense_label="1\(1\)" />: We can enter a within statement to limit the concordance to a specific 

corpus, a specific prep, and a specific sense_label in the <doc> and <s> structures. 

¶ <compl sst=".*" />: This identifies all the complement supersense tags. This concordance can 

then be used to examine the tags in more detail. 

¶ <compl> [] </compl> within <doc corp="cpa"/> within <s prep="after"/> within <s 

sense_label="1\(1\)" />: The concordance will limit to the specified corpus, preposition, and 

sense label and will highlight the keyword in context in the preposition complement. This query 

search will provide the (WordNet) semantic sketches for the complement. 

¶ <gov sst=".*" />: This identifies all the governor supersense tags. This concordance can then be 

used to examine the tags in more detail. 

¶ <gov> [] </gov> within <doc corp="cpa"/> within <s prep="after"/> within <s 

sense_label="1\(1\)" />: As above, the concordance identifies the corpus, preposition, and sense 

label, but the word in context is the preposition governor. 

¶ <gov> [] </gov> []{2,5} <prep> [] </prep> []{2,5} <compl> [] </compl>: This search identifies 

the prototypical prepositional phrase pattern. It looks for the governor, followed by the 

preposition and the preposition complement. 

The CQL queries described above provide the basic forms that can be used in more details as well as the 

ability to characterize the behavior for document corpora, prepositions, sense labels, classes and 

subclasses, and supersense tags for complements and governors. The Text types section, described below, 

can assist the construction of CQL queries (see also in Figure 7). 

3.1.2. Context 

The Context option in the search query allows a specification of lemmas in the context of the search 

term. For the most part, this option is not likely to be used in investigating the preposition corpus. 

However, when a preposition is entered as a simple query, without any further specification, the entire 

corpus is searched, without regard to where it occurs, frequently beyond the sentences that were identified 

in the preposition corpora for the specific preposition. In such cases, it may be useful to examine the 

occurrence of the preposition in contexts beyond those sentences tagged for the specific preposition. Such 

cases may also be identified by performing frequency analyses for the concordances that are generated, as 

described above. 

3.1.3. Text types 

The Text types section in the search query provides the ability to specify portions of corpus structures to 

be used in generating a concordance. For the preposition corpus, there are five structures: (1) Corpus, (2) 

Sentence, (3) Preposition, (4) Complement, and (5) Governor. In general, the types included here 

identify the various structures in the corpus. Several of these will be relevant for the preposition 

concordance analyses:  

¶ the Corpus structure (<doc>) contains the “corp” attribute, which identifies one or more of the 

three corpora (cpa, oec, or fn), allowing focus to a desired corpus 

¶ the Sentence structure (<s>) contains six attributes: (1) the “prep” preposition (289 values), (2) 

the “class” sentence class (12 values, plus infelicitous sentences using pv or x class names), (3) 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 12 

the “subc” sentence subclass (67 values), (4) the “sense_desc” sense description (1012 links that 

identify a PDEP pattern link to a specific preposition and sense number), (5) the “sense_label” 

sense label (169 sense numbers), and (6) the “inst” sentence instance number (26,205 numbers) 

¶ the Preposition structure (<prep>) surrounds the preposition sentence (80,363) 

¶ the Complement structure (<compl>) surrounds the 73,692 complements with 45 supersense 

tags (i.e., WordNet lexicographer file names) 

¶ the Governor structure (<gov>) surrounds the 74,900 governors with 46 supersense tags (i.e., 

WordNet lexicographer file names) 

In general, the text types limit the sentences that will be included in a concordance. However, these 

selections must be used carefully to produce what is desired. Usually, the CQL query type should begin 

with one of the <prep>, <compl>, or <gov> structures, containing “[]+” as the minimal. After this, 

further information is specified in the CQL, using one or more of the text types in the form.  

The Corpus can be used to specify one of the three corpora. The Preposition is a text type that contains a 

drop-down list (where phrasal prepositions require “%20” for any spaces) when the user starts entered 

characters. The Sentence classes and subclasses are checkboxes for each of the possible values. The 

Sentence “sense_label” is a drop-down list of the 169 possible values to limit to specific senses for a 

preposition; all sense labels include parentheses and need to be preceded by backslashes. When they are 

specified in Text type form and a concordance is obtained, the resultant concordance description with the 

circled “i”, will show the CQL specification with the text type included as in Figure 7 (which shows a 

<prep> structure with a specified class and sense_label in the sentence structure). 

 

Figure 7. Concordance Description 

The Sentence sense description can be specified in the Text types, and are provided in a drop-down list; 

these are not useful for specifying with this form (see Figures 4 and 5 for these values). The Sentence 

instance numbers are not included in the Text types; these are not of any meaning. The supersense tags 

are listed in checkboxes for the Complement and Governor structures, i.e., the various WordNet 

lexicographer file names. These cannot be used to obtain in this part of the form, since these checkboxes 

contain a period in the name (e.g., noun.event) which need to be escaped. 

3.2. Word List 

The Word list option lists the frequency in the preposition corpus for a specified attribute. For this 

corpus, one of three search attributes can be used: (1) Positional attributes, (2) Word sketch, or (3) Text 

types. 

¶ Positional attributes include wid (token identifier, not used), word, lempos (lemma with part of 

speech), tag, head (number with head token identifier, not used), deprel (dependency relation), 

lemma, lempos (lowercase) (same as lempos), lemma (lowercase) (same as lemma), and word 

(lowercase). The list for any positional attribute covers the values in the full preposition corpus. 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 13 

Only the tag and the deprel are meaningful for the corpus, unless a subcorpus is created. The 

word and lemma options essentially duplicate frequency lists that might be found with any 

corpus, e.g., showing prepositions and articles as the most frequent items. 

¶ Word sketch includes only collocations. The word list identifies two-word collocations, for the 

entire corpus, not limited to collocations involving a tagged preposition. 

¶ Text types include Sense label, Sense description, Sentence class, Sentence instance, Sentence 

subclass, Sentence preposition, Complement supersense tag, Governor supersense tag, and 

Corpus. The word list for each of these items only identifies the number of tokens in sentences 

with the specified text type. Only the supersense tags identify the frequency of occurrences with 

the specified structure.  

The word list also provides filter and output options. We have not used these options for any specific use 

for the preposition corpus. 

3.3. Word Sketch 

The Word sketch option provides a one-page summary of categorized collocations for the behavior of a 

lemma, via grammatical relations that have been specified in the word sketch grammar (included in the 

information for the preposition corpus). This is obtained by specifying a lemma, usually a preposition 

when examining the preposition behavior. Multiword phrasal prepositions cannot be entered into the word 

sketch lemma; this will be discussed below. Word sketch also allows various advanced options. 

3.3.1. Sketch Options 

The main option is the specification of the grammatical relations (gramrels) identified in the sketch 

grammar. Although each gramrel can be ticked in a checkbox, there are two groups: (1) CoNLL relations 

generated from the vertical dependency relations and (2) prepositional semantic relations from corpus 

attributes, identifying multiword prepositions and combinations of preposition and complement or 

governor. Each of these groups are discussed in detail below. 

Several options specify how the gramrels are displayed. Each gramrel includes the grammatical category, 

the total frequency of the collocation, and the frequency of each collocation, which will display the 

concordance. Other options include the number of gramrel columns, the minimum frequency to show the 

gramrel, the maximum number of items in a gramrel, how the gramrels are sorting, and whether to show 

the longest-commonest match. These are described in more detail for the other options in the Sketch 

Engine user guide. 

3.3.2. CoNLL Relations 

When examining only gramrels for CoNLL dependency relations (see Figure 8 for an example), the word 

sketch lists lemmas that have the minimum frequency. For each lemma, the logDice score is shown (see 

Equation 1). In this equation, the number of occurrences of the collocate is the frequency shown in the list 

(e.g., “pcomp” and “which”). The number of occurrences of the keyword is the overall frequency (e.g., 

the combination of “from” and “pcomp”). The number of occurrences of the collocate in the whole corpus 

is determining by searching the lempos_lc for the corpus (“which-x”) and then identifying the frequency 

of the gramrel (e.g., “pcomp”). 

https://www.sketchengine.co.uk/user-guide/user-manual/word-sketch/#toggle-id-3


Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 14 

The gramrels meeting the minimums (having the minimum number of lemmas) are ordered by the total 

frequency for the deprel. Within each gramrel, the lemmas are ordered by the logDice. The gramrel will 

contain all lemmas above the minimum frequency, for a maximum number specified. For lemmas having 

a specified frequency (e.g., 50), the lemma appears in bold and has “+” to indicate that multiword word 

sketch links can be examine in more detail for the lemma. In such cases, a word sketch may provide 

additional lemmas to form larger collocations. 

While other lemmas can be examined word sketches in the preposition corpus, this will be used primarily 

for examining preposition collocations. As a result, the most frequent gramrel is likely to be for the deprel 

pcomp, i.e., the preposition complement. The lemmas in pcomp will identify the frequent collocations for 

the preposition. For some prepositions with few instances, the minimum frequency may require set to 1. 

Even for a preposition with a high frequency in the corpus, only a few gramrels (i.e., deprels) will appear 

in sketch; e.g., the sketch for of has only 9 gramrels in addition to pcomp. 

 

Figure 8. Word Sketch for from 

The word sketch is limited to a single word as the lemma (i.e., not phrasal prepositions). When the lemma 

is a preposition that is the first word of phrasal prepositions (such as in or with), the lemmas in the pcomp 

gramrel will correspond to multiword word sketches. When examining the concordance of such instances, 

the general source of the frequency will correspond to sentences with the phrasal preposition. Although 

the other gramrels in addition to pcomp are much smaller in frequency, they can be indicative of 

significant behavior. For example, the advmod in Figure 8 corresponds to the phrasal preposition apart 

from. The punct and prep gramrels also identify punctuations or additional preposition collocations for 

from. 

3.3.3. Prepositional Semantic Relations 

The word sketch for the preposition corpus includes 11 gramrels in the sketch grammar identifying 

multiword prepositions and combinations of preposition and complement or governor. The object of these 

gramrels is to characterize semantic relations for the complements and the governors. The procedures for 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 15 

using these gramrels involve additional steps since the preposition corpus has several nuances to be 

considered. 

The first procedure is designed to obtain word sketches for phrasal prepositions. This shows that the CQL 

query using all preposition structures indicates sentences for 289 prepositions, with 126 single-word 

prepositions and 163 phrasal prepositions. The single-word prepositions can be entered directly as the 

lemma to obtain the word sketches. For phrasal prepositions, the mechanism is to use the first word of the 

phrase for the lemma. When the word sketch is displayed (see Figure 9), the first gramrel is labeled as 

“multiword prepositions with “%w””, with the input lemma listed in the gramrel head. The lemmas listed 

in the gramrel constitute each of the phrasal prepositions that begin with word sketch lemma. To ensure 

that all phrases are shown, the minimum frequency should be set to 1 and ensure that the maximum 

number of items in the gramrel will show all phrases. In this gramrel, when a phrase has a “+”, clicking 

on the phrase will generate a following word sketch for the phrase. In addition, the minimum frequency 

for multiword word sketch links should also be set to 1. For example, using “in” as the initiating lemma, 

54 additional phrases are including; when clicking on “in_the_name_of +”, the subsequent semantic 

relations will be shown (characterizing as “in-i filtered by in_the_name_of-x”). 

 

Figure 9. Semantic Relation Word Sketch for in 

Most of the phrasal prepositions have a single-word preposition as its first word (such as “by” or “in”). In 

some cases, the first word may not be a preposition, such as in “upwards of” or “a cut above”. In general, 

using the “auto” part of speech for the lemma will still have the word sketch desired result. For 

“according to”, it will be necessary to use “accord” as the lemma; this generates a multiword preposition 

for “accord_to +” as the desired sketch. Some investigation may be needed to examine the setting to 

obtain the word sketch. 

Four gramrels are used for single-word prepositions, as in Figure 9. Two gramrels list for the 

complements and two gramrels list for the governors, one for words and one for semantic classes. The 

words list the lemmas; the semantic classes list the supersense tags (i.e., the WordNet file names). The 

word lemmas or semantic class supersense tags can also be generated using CQL queries; the benefit with 

the word sketch is that it will generate the four gramrels together, rather than requiring the four CQL 

queries specifying each. 

To understand the logDice calculations for grammatical relations, written (word1, gramrel, word2), with  

 ||𝑤1,𝑅,𝑤2||. (2) 

For w1, we will be specify a preposition, where we can use “.*” or the word, such as “in-i” (the lempos), 

or even combinations, such as “in-i| from-i”. For R, we specify the grammatical relation (gramrel) where 

one of the names in the gramrel set. These can be a shortened name, such as “semantic classes 

complementing”. For w2, we will specify a “word”, which can be a specific word or a semantic class. 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 16 

As an example of how the logDice is computed, we use the “direction” lemma in Figure 9. Let w1 = “in-i” 

(i.e., based on the word sketch with the lemma “in”), R = “words complementing preposition .*” (the 

gramrel selecting the word sketch grammar), and w2 = “direction-n” (the lemma with the noun lempos 

“n”). We can use a CQL query to obtain the values as “[ws (“in-i”, R, “direction-n”)] for 53 instances 

with this lemma as the complement with this preposition, “[ws (“in-i”, R, “.*”)] for 2601 instances 

corresponding to all the complement lemmas, and “[ws (“.*”, R, “direction-n”)] for 78 instances 

corresponding all prepositions having “direction” as the complement lemma. The general word sketch 

logDice score (a variant of Equation 1) is 

 
𝑙𝑜𝑔𝐷𝑖𝑐𝑒=14+𝑙𝑜𝑔2 

2||𝑤𝑖,𝑅,𝑤2|| 

||𝑤𝑖,𝑅,∗|| + ||∗,𝑅,𝑤2||
=14+ 𝑙𝑜𝑔2

2∗53

(2601+78)
=9.34 (3) 

indicating in this case that “direction” in a highly collocate with “in” compared to other prepositions. As 

indicated, the first two components of the logDice computation are shown directly in the grammatical 

relation, while the other component is not intuitive and needs to be identified from the CQL query word 

sketch. 

As suggested in Figure 9, the words and particularly the semantic classes provide interesting behavior 

descriptions, indicating the most frequent items. In addition, more detail about semantic classes can be 

obtained by following the multiword sketches (i.e., those with “+”). For example, clicking on 

noun.location for “in”, the multiword sketch provides details for “in-i filtered by noun.location-x”, in 

Figure 10. We can see contrasts between the multiword gramrels with the gramrels of the base. For 

complementing words, there is a difference between Figure 9 and Figure 10; the word direction is still 

the same top word at the same frequency, but the logDice increases from 9.34 to 12.03. For the governing 

words, few words meet the minimum value and the logDice is much lower than for the full table. For the 

governing semantic classes, none of the high classes appear in the multiword sketch. Thus, the multiword 

sketches provide a difference from the full word sketch. 

 

Figure 10. Detailed Word Sketch for Semantic Class for in 

Four gramrels for the single-word preposition (not shown, but below from those in Figure 9) provide the 

summaries of word and semantic classes for all those from the multiword prepositions beginning phrasal 

prepositions with the word sketch lemma (e.g., the 54 multiword prepositions for “in”). In general, it is 

unlikely that there is any semantic thread from these multiword. As also suggested above, it is probably 

desired to follow the multiword sketch for the phrasal preposition to understand their behavior. 

The final two gramrels that may be generated from the word sketch arise when a complement is a 

preposition or a governor is a preposition and these positions have another preposition structure. For 

example, “in” occurs in some sentences as the governor and there is another preposition that occurs as a 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 17 

focus of a prep structure (such as “preparatory to”, “as well as”, and “ahead of”). These types of gramrels 

seldom occur; it is not clear that such behavior is of considerable interest. 

3.4. Thesaurus 

The Thesaurus option provides a form that requires a single-word preposition lemma (i.e., phrasal 

prepositions are not included). For the preposition corpus, the results generate a list of similar 

prepositions, as shown in Figure 11. This list is ordered by an association score. The list also shows the 

frequency of each preposition in the corpus. Next to the list is a word cloud, with the most similar 

prepositions in the largest size. Each preposition may be selected (either from the list or the cloud) to 

show the sketch difference from the seed lemma. The form has a set of advanced options: (1) a maximum 

number of items, (2) a minimum score, (3) whether to show the head word in the cloud, (4) whether to 

cluster items, and (5) the minimum similarity between cluster items (a higher number produces smaller 

groups of words which are closer in meaning). 

 

Figure 11. Thesaurus Results for Preposition across 

The thesaurus finds words that tend to occur in similar contexts as the target word. In general, the 

similarity score between two words w1 and w2 is computed by first determining all the overlaps where the 

two words share a collocation in the same grammatical relation where an association score is greater than 

0. The set of all word sketch triples (headword, relation, collocation) is used to find applicable contexts 

(ctx(w1)), i.e., the set of (relation, collocation) in the word sketch triples set. The logDice is used as an 

association score. A distance score is then computed. 

The distance between two prepositions is preserved, i.e., when changing the seed word back and forth. 

However, the position in the list will change. For example, for at, the closest word is from (with a score of 

0.410), whereas with from, at is in the 9th position. (Since the matrix is symmetric, one could conceivably 

prepare a matrix with the prepositions as rows and columns. Then, one could highlight the cells that show 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 18 

the highest scores. I don’t know how such a matrix could be generated, other than going through the 

prepositions one by one and saving the results.) 

When the minimum similarity between cluster items is increased, fewer prepositions are included in the 

clusters and there seems to be a tendency toward greater similarity. In addition, it almost seems as if the 

clusters hold more generally, and not just in relation to the seed lemma. But also, the clusters may not 

meet intuitive expectations (e.g., under doesn’t show similarity with underneath or below). 

3.5. Sketch Difference 

The Sketch diff option provides a form that allows the comparison of two lemmas. (This option can also 

be accessed from Thesaurus results.) This option shows the differences in the word sketches between two 

lemmas, as described in Figure 12. The basic form asks for the first and the second lemma. There are 

several advanced options. 

 

Figure 12. Sketch Difference between across and over 

The result assigns red and green colors to the two lemmas. The collocates in each color tend to combine 

with the lemma of the same color, with white collocates tending to combine with both lemmas. Bolder 

shades indicate stronger collocations. The top line shows the two lemmas and their respective frequencies 

within the corpus. The next line shows the two lemmas at the ends of a spectrum of color, with the color 

boldness corresponding to the collocation strength. The results are shown in boxes, each of which is 

labeled by the grammatical relation, i.e., those identifying in the word sketch grammar (if not clear, 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 19 

looking at examples will help identify the category). For the preposition corpus, the grammatical 

categories are the dependency relations (deprels) and the prepositional semantic relations.  

The boxes show the results in the gradations of color, from green to red (listed as +6.0 to -6.0, with no 

explanation). A relation is shown when a lemma or a semantic class has the minimum frequency 

threshold. Each box has a line showing the relation with the total frequencies and the logDice scores for 

each preposition. Within each box, the lemma or the semantic class is given on each line, along with the 

frequencies and logDice scores of the relation for each preposition (clickable so that these instances can 

be examined, with the lemma highlighted). The frequencies may not add to the total for the gramrel, since 

the other items do not attain the minimum frequency threshold or the maximum number of items that can 

appear in a block, as specified in advanced options. 

With the advanced options, one can specify that the differences be shown in a single box for each relation, 

or in common/exclusive blocks. With a single box, one can see a gradation from one word to the other, 

with common lemmas in white in between. This perhaps allows a little bit of judgment as to the overlap 

between the two lemmas. 

4. Use of Sketch Engine for PDEP Database 

The primary purpose of uploading the PDEP corpora in Sketch Engine is to provide a systematic basis for 

completing fields in the patterns describing each sense of a preposition. Specifically, this includes a 

syntactic and a semantic characterization of the complement and the governor. In the initial creation of 

the TPP database, the complement and the governor were described using general lexicographic 

principles. In addition, TPP also identified a syntactic position (e.g., noun postmodifier, adjunct, verb 

complement, or adjective complement). These can be made more precise by examining the sketch engine 

data. For example, we would begin with a specification such as <compl> [tag="N.*"] </compl> within 

<s prep="after" & sense_label="7\(3\)" /> within <doc corp="fn" /> and examine frequencies of 

characteristics of such a concordance. 

Another major use afforded by the sketch engine data is the ability to examine the PDEP classes and 

subclasses. Srikumar and Roth (2013) showed the utility of examining preposition behavior across 

prepositions. Litkowski (2017) performed a series of feature analyses across prepositions using Kullback-

Leibler and Jensen-Shannon divergences, based on the PDEP classes. With the addition of PDEP 

subclasses, it may be possible to judge the consistency and differences among subclasses compared to 

their classes. The TPP data also identified substitutable prepositions, viewed as somewhat narrower than 

classes or subclasses. 

We describe procedures for carrying out these analyses. In formulating the queries for these procedures, it 

is useful to keep in mind that they can be performed over the entire corpus (remembering that it is not 

representative) or a specific subcorpus (CPA, OEC, or FrameNet). When these analyses are performed, it 

may be useful to save the results. 

4.1. Examining the Complement or Governor of Preposition Senses 

To examine the complements or the governors, it is necessary to begin the CQL specification with either 

<compl> [] </compl> or <gov> [] </gov>. These bare specifications identify all 73692 complements or 

74900 governors. We use the text type fields of a search query to narrow the concordances. For the corpus 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 20 

structure or the sentence structure, the text type can also be specified by within clauses. For specific 

complement or supersense tags, the CQL needs to be identified inside the bracket. The general PDEP 

pattern would specify a preposition and a sense, possibly looking within one subcorpus at a time. 

Following Srikumar and Roth, instead of a single preposition and sense, we can use a single subclass, 

several subclasses, or a full class; using this form will make it possible to include several preposition-

senses together. 

The most efficient procedures for obtaining the characteristics of the complements and the governors use 

Frequency (compute frequencies) in the left menu. Under the Multiple frequency distribution, useful 

results suffice the first level and look at the Node for the various attributes, selecting from their drop-

down list. The deprel and tag attributes will provide an initial overview, each of which have fewer types. 

For tag, most types are “N.*” or “V.*”; to obtain summaries of these types, more detailed concordances 

will be necessary. In some cases, word, lemma, and lempos (lowercase) may be useful, although these 

attributes generally have more many items. The semantic characteristics of the complement or governor 

(i.e., supersense tags) can be seen using the Text type frequency distribution by selecting the category 

of Complement supersense tag or Governor supersense tag. This will list the WordNet lexicographer 

file names in descending frequency. When viewing these results, it should be kept in mind that many 

lexical items are not assigned a supersense tag, particularly when the complement is a personal pronoun 

or the governor is a copular verb. When these results are saved, the number of instances without a 

supersense tag will also be listed. 

For the complement, the most frequent dependency relation (deprel) is likely to be pcomp (i.e., a 

preposition complement), regardless of subcorpus, preposition, or sense. In general, the tag is likely to be 

some variant of “N.*” (i.e., some type of common or proper noun), where some prepositions or senses 

may be more frequent for plural nouns or proper nouns. Some prepositions or senses may have more 

frequent for personal pronouns, determiners, or gerunds. The supersense tags for complements will 

usually have noun.* types. In general, complements will not have frequent words or lemmas or other 

variations, except for prepositions that have many personal pronouns or determiners. When examining the 

frequencies for an attribute, we might look at some oddity in the parsing, pursuing for further analysis. 

For the governor, there is considerable variation in the attributes (deprels, tags, lemmas, and supersenses) 

among the prepositions and their senses. For example, for “after”, the most frequent deprels are ROOT, 

vch (a verb chain), ccomp (complement), with most being variants of “V.*” (i.e., some type of verb) and 

with verb.* supersenses. For “of”, the most frequent deprels are pcomp (i.e., following another 

preposition complement) dobj (direct object), and subj (subject), mostly nouns forms (“N.*”) and noun.* 

supersenses. For “because of”, the emphasized deprels are vch, ROOT, and ccomp, with a high frequent of 

be-v lowercased lemmas, and mostly types of verb.* supersenses. These variations suggest that 

distributional analyses may be fruitful. 

4.2. Class and Subclass Analyses 

PDEP has assigned classes and subclasses to each sense. Sketch Engine provides an opportunity to 

question these assignments and to examine the consistency of the classes and subclasses. In general, these 

analyses involve a text type restriction in the <s> structure to specific classes or subclasses. In CQL, such 

a restriction is specified as class = “value” or subc = “value”. The 12 class values and the 67 subclass 

values are available as checkboxes under the text types. When using a CQL specification for a 

http://www.clres.com/db/classes/ClassAnalysis.php


Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 21 

preposition, complement, or governor, we can add a further specification using within an <s> containing 

a class or subclass. Values can also be combined in a specification, by enclosing optional values in 

parentheses separated by “|”, e.g., (subc = “Above” | subc = “Below”). These values can enable unusual 

combinations that can examined for other properties. 

There are several dimensions of properties that can be examined under the class analyses. Of primary 

interest are the complement and the governor properties. To access these, either <compl> [] </compl> or 

<gov> [] </gov> should be used as the principal specification in the CQL statement. Once a concordance 

has been generated, the properties can be examined in detail using the frequency and collocation tools. 

The tag and deprel frequencies provide an initial overall picture. For the complements, we should expect 

that noun tags and pcomp deprels (preposition complements) will predominate. For some prepositions, 

wh-clauses or gerundial forms will show heightened frequencies. For the governors, we can expect verb 

forms and ROOT deprels, although in many cases the preposition phrase will be governed by a pcomp, 

suggesting that it is modifying a noun. 

The supersense tags may provide the best characterization of the complements and the governors. When 

examining a class or subclass, it may be useful to first bring up a frequency analysis by the document 

preposition. Then, the sketch engine provides the ability to generate a concordance for each preposition 

and then to generate frequency analyses for each in turn, enabling a side-by-side comparison of the 

frequencies. These results can also be saved and use for more detailed divergence analyses. 

5. General Observations About Preposition Behavior Using Sketch Engine 

In addition to the more specific results described above, examination of the corpora in Sketch Engine 

provides some further insights into preposition behavior.  

5.1. Collocates of Prepositions 

The CQL search <prep> []+ </prep> within <s/> generates a concordance of all the prepositions within 

the English preposition corpus sentences. When examining the collocation candidates using the deprel 

attribute within five tokens to the left and to the right, ROOT has the highest logDice score, following by 

subj, pcomp, det, punct, and amod. This can be interpreted as saying that a prepositional phrase usually 

modifies the root of the sentence or its subject, it generally consists of a preposition complement modified 

by a determiner or an adjective, and it frequently ends some sort of punctuation. 

5.2. Variations in Preposition Tagging 

Sketch Engine can be used to identify errors in recognizing prepositions using the Tratz parser. When the 

TPP corpora were prepared, the target preposition was specified using its character position within the 

sentence, prior to parsing. In general, we would expect the parser to yield a prep deprel and an IN tag for 

the preposition. However, this is not the case. To investigate such cases, we use the CQL query as 

indicated in the previous section to examine the attributes for the single-word prepositions and the 

multiple words of phrasal prepositions. Using the multilevel frequency distribution option from the 

Frequency menu, we specify the deprel attribute or the tag attribute for the node position. Thus, in 

addition to identifying the constituents of multiple word phrasal prepositions, these attributes also identify 

where single-word prepositions have differences that are not expected. 



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 22 

For the most part, single-word and phrasal prepositions follow the expected deprel (prep, prep pcomp 

prep, and prep det pcomp prep) and tag (IN, IN NN IN, and IN DT NN IN) patterns, but only slightly 

above 72 percent of these instances. There are 399 deprel different configurations and 97 tag different 

configurations. In addition, there are several other attribute values for single-word prepositions, with 

about 40 different deprels and 25 different tags. With Sketch Engine, we can use the frequency lists to 

examine the deprels or tags that have given rise to unexpected values and to examine the concordances 

for the different configurations. 

Several single-word prepositions, such as “about”, are frequently confused in parsing as adverbs or 

particles. For phrasal prepositions, such as “apart from” or “because of”, the parsing goal is to label them 

with the deprel “prep combo”. Many of the attribute configurations may have arisen from incorrect parses 

or problematic spaces in attempting a sentence. Sketch Engine frequency analyses permit us to see where 

this goal has not been achieved. 

As mentioned earlier, the FrameNet is not representative. One indication of this is that when we examine 

the frequency deprel and tag patterns for the FrameNet subcorpus, there are not multiple-word phrasal 

prepositions. That is, these sentences have only a single deprel or a single tag. However, even in these 

instances, about 5 percent of the instances have attributes that are not the expected prep or IN attributes 

and so can still be used to help in improving parsing or tokenizing techniques. 

5.3. Infelicities in Tagging Preposition Contexts 

Sketch Engine also facilitates an examination of the contexts of the preposition use to identify 

problematic cases. This can be done using the collocation or the frequency options for a concordance, 

using View options to display attributes as tooltips. 

The collocation option is best used in conjunction with <prep> []+ </prep> queries. For the most part, 

these collocations are best used to examine 1 to 3 positions to the right of the preposition. Examination of 

the left context is generally not as fruitful. In general, we would expect pcomp to be the highest ranked 

deprel (corresponding to the preposition complement), with higher logDice values for det (determiner), 

amod (adjective modifiers), nn (noun modifiers), and poss (for possessive modifiers). All other deprels 

will also be listed in the collocation candidates, in decreasing logDice levels. We can be examined the 

concordances with each deprel collocation candidate; in addition to the preposition, the concordance will 

highlight the token for the deprel including with the candidate This makes it easier to determine if the 

expectations make sense. 

The frequency option is best used to examine the complements (with <compl> [] </compl>) and the 

governors (with <gov> [] </gov>), specifying particular prepositions, classes, or subclasses, as described 

above. In general, the focus of these frequency analyses is to identify predominant syntactic or supersense 

tags, as described earlier. In addition, we can examine the less frequent values. The tag frequencies may 

reveal parsing problems or may uncover less frequent, but important possible values for the complement 

or the governor. The supersense frequencies may identify problems with using the most frequent 

WordNet sense; this may suggest that some of the more frequent supersenses may have an even higher 

frequency.  



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 23 

References 

Massimiliano Ciaramita and Yasemin Altum. 2006. Broad-coverage sense disambiguation and information 

extraction with a supersense sequence tagger. EMNLP-‘06 Proceedings of the 2006 Conference on Empirical 

Methods in Natural Language Processing, Sydney, Australia, ACL, 594-604. 

Ken Litkowski. 2013. The Preposition Project Corpora. Technical Report 13-01. Damascus, MD: CL Research. 

Ken Litkowski. 2014. Pattern Dictionary of English Prepositions. In Proceedings of the 52nd Annual Meeting of the 

Association for Computational Linguistics. Baltimore, Maryland, ACL, 1274-83. 

Ken Litkowski. 2017. Pattern Dictionary of English Prepositions. In M. Diab, A. Villavicencio, M. Apidianaki, V. 

Kordoni, A. Korhonen, P. Nakov, and M. Stevenson, editors Essays in Lexical Semantics and Computational 

Lexicography – In Honor of Adam Kilgarriff. Springer Series Text, Speech, and Language Technology. Springer. 

Ken Litkowski and Orin Hargraves. 2005. The preposition project. ACL-SIGSEM Workshop on “The Linguistic 

Dimensions of Prepositions and Their Use in Computational Linguistic Formalisms and Applications”, pages 

171–179. 

Diana McCarthy, Adam Kilgarriff, Milos Jakubicek, and Siva Reddy.2015. Semantic Word Sketches. Corpus 

Linguistics 2015. Lancaster University. 

Vivek Srikumar and Dan Roth. 2013. Modeling Semantic Relations Expressed by Prepositions. Transactions of the 

Association for Computational Linguistics, 1. 

Angus Stevenson and Catherine Soanes (Eds.). 2003. The Oxford Dictionary of English. Oxford: Clarendon Press. 

Stephen Tratz. 2011. Semantically-Enriched Parsing for Natural Language Understanding. PhD Thesis, University 

of Southern California. 

Stephen Tratz and Eduard Hovy. 2011. A Fast, Accurate, Non-Projective, Semantically-Enriched Parser. In 

Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh, 

Scotland, UK. 

 

  



Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 24 

Appendix 

Python Script to Create a Vertical File 

This section describes the Python script (download_parses.py) used to create the vertical file 

preposition.vert and the file preposition.conll that were uploaded to the sketch engine. This script is 

accompanied by a Makefile that automates this creation, iterating over the files in the /data subdirectory 

((cpa|fn|oec).html), each of which contains a list of *.parse files in the directory /db/parses/(cpa|fn|oec) 

at the PDEP web site. The Python script is called with one of the HTML files as argument. The output of 

each processing is appended to preposition.vert, at the completion of which, this file is used to create 

preposition.conll. 

1. main 

This function creates an argument parser to read the input file name (the HTML file). It defines the PDEP 

domain as http://www.clres.com/db/parses/ and corpus_name as a result of matching (.*).html from the 

file name. We then iterate over each line in the HTML file, with a regular expression search that obtains 

the prep_file_name and the prep from any line containing (.*).parse. When we have a prep_file_name, 

we get the JSON file at r from http://www.clres.com/db/getDeps.php with corpus_name and prep as 

arguments; this file contains the complement and the governor locations and lengths for all instances of 

the preposition in the corpus. We set remote_file to r.data and compl_gover (complement and governor) 

to the result of json.loads of remote_file. We print the opening tag for this preposition, <doc 

corpus=”corpus_name” preposition=”prep_file_name”>. The function get_content is then called with 

the url, corpus_name, prep, and compl_gover as arguments (1) to link the dependency file with the 

preposition sentence file, (2) to link these with the sentences in the dependency parses file, and (3) to 

create a new vertical file with tags (for the preposition, complement, and governor) surrounded by a 

sentence element with a sense label and a link to a sense description and with part-of-speech tags 

appended to the lemmas. Finally, we print the closing tag, </doc>. 

1.1. get_content (url, corpus_name, prep_file_name, compl_gover) 

This function has the arguments url (the url of CoNLL formatted verticals for the given corpus and 

preposition word, e.g., http://www.clres.com/db/parses//fn/above.parse), corpus_name (the name of the 

corpus), prep_file_name (name of file that stands for preposition we want to investigate), and 

compl_gover (a list of JSON objects that consists of the sense, the sentence number, the complement 

location and its length, and the governor location and its length). 

The function first gets the vertical file at the url and sets prep_sents to the result of calling get_sentences 

to get all the sentences for the specified preposition in the specified corpus in CoNLL tokenized format. 

The function next iterates over the elements in compl_gover, using j_obj as the iterate, with a message 

identifying which record is being processed, where each iterate identifies a sense, an instance number, and 

the locations and lengths of the complement and the governor. The function next calls the PDEP script 

http://www.clres.com/db/prepsents.php?source=FN&prep=about&sense=1(1) to get all the sentences that 

have been tagged in the specified corpus for the preposition with the given sense. Next, we iterate over 

these sentences, searching for the one whose ‘inst’ element is equal to the ‘inst’ element of j_obj. Once 

this link is made, we next need to find this sentence in the vertical file. This is done by iterating over the 

http://www.clres.com/db/parses/
http://www.clres.com/db/getDeps.php
http://www.clres.com/db/parses/fn/above.parse
http://www.clres.com/db/prepsents.php?source=FN&prep=about&sense=1(1)


Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 25 

sentences in prep_sents, with the iterate sent, calling sent_plain with sent until its result matches the 

string formed by concatenating the word associated with the ‘sentence’ element of the matched instance. 

When a match with the file in the vertical file is made, matching_sent is set to sent and the variables 

sense, p_sent, prep_loc, and prep_len are set to the ‘sense’, ‘sentence’, ‘preploc’ (preposition location), 

and ‘prep’ (preposition) elements of the sentence that was matched with the ‘inst’ element. Next, tags are 

added to p_sent, first to surround the preposition of interest with the <prep> tag, and then to try to do this 

as well for the governor (<gov>) and the complement (<compl>), into the variables preposition_sent, 

governor_sent, and complement_sent. 

If matching_sent, sense, and preposition_sent have values, create_new_vert is called with 

matching_sent, sense, prep_file_name, and the collapsed sentences preposition_sent, governor_sent, 

and complement_sent (each of which will now have a tag) to print a vertical file entry for 

matching_sent, surround by a sentence tag with attributes for the sense and a link to the PDEP pattern for 

that sense. Otherwise, a message is written to stderr that the sentence wasn’t found for this j_obj. 

1.2. create_new_vert (matching_sent, governor_sent, preposition_sent, complement_sent, sense, 

preposition) 

This function prints out a new vertical file for the argument matching_sent. The function first calls 

include_component to identify the locations for the <gov>, <prep>, and <compl> tags, i.e., the 

beginning and ending token numbers. The function prints the opening tag for the sentence, <s 

sense_lab=”sense” 

sense_desc=http://clres.com/db/TPPpattern.php?prep=preposition&sense=sense>. The function then 

iterates over the tokens in matching_sent setting i to obtain the token. If i is the starting or ending 

position for the governor, preposition, or complement, the corresponding tag is printed as part of the 

vertical file. The function next prints a line for the token, with tab-separators, including the token id, the 

token itself, the lemma (lempos), the (part-of-speech) tag, the dependency id, and the dependency 

relation. After printing all tokens, a closing <s> tag is printed. 

1.3. include_component (tok_sent, plain_sent, structure) 

This function marks the beginning and ending locations for the <gov>, <prep>, and <compl> tags in the 

vertical file, i.e. the structure argument. If plain_sent is empty, returns -1, -1. Otherwise, enters a while 

loop over the tokens in tok_sent, setting token to each token in turn. If token.word begins plain_sent, 

resets plain_sent by this word, increments a token counter, and continues to the next word. If instead, 

plain_sent begins with <structure>, removes the tag from plain_sent and sets start to token.id. If 

plain_sent begins with </structure>, removes the end tag from plain_sent and sets end to token.id. 

Proceeds over all tokens of the sentence, possibly unnecessarily. After the loop, if 1000 tokens have been 

counter, prints an error message. If both start and end have been set, returns them. Otherwise, prints an 

error message. 

1.4. get_sentences (memory_file) 

This function builds an array at result by iterating over memory_file as long as a sentence s is returned, 

appending each sentence to result. This array is the set of all sentences for a particular corpus and 

preposition, with each tokenized in CoNLL format for printing to the vertical file. 

http://clres.com/db/TPPpattern.php?prep=preposition&sense=sense


Technical Report 17-01. Damascus, MD: CL Research (Draft) Page 26 

1.5. get_sentence (memory_file) 

This function gets a sentence from memory_file. Starts with an empty array at sentence. For each line in 

memory_file that is not empty, splits into spl based on tab separators. Sets id, word, lemma, tag, depid, 

and dep_lable to spl[0], spl[1], spl[2], spl[4], spl[6], and spl[7], respectively, with an error message if 

there is an index error. If successful, sets token to the result of creating a new Token with these variables 

as argument and appends this token to sentence. If a line is empty, the function yields sentence (i.e., 

returns this result to the calling function get_sentences) and empties it for the next sentence. 

1.6. sent_plain (sentence) 

This function builds an array of the token.word elements of sentence. It then returns a string 

concatenating the elements of the array into a string corresponding to the sentence without any 

whitespace. The output of this function is used in matching the sentence with an instance number in 

get_content and in identifying the location of the preposition, the complement, and the governor tags in 

include_component. 

1.7. getsups () 

This function builds global arrays dict and subcs from the preposition classes JSON data.8 Each item of 

the JSON data has a combination tup (a tuple) for the ‘prep’ and ‘sense’. This tuple is entered to the array 

dict[tup] for the ‘sup’ and to subcs[tup] for the ‘subc’. These will be used in create_new_vert. 

1.8. getdicts () 

This function builds a global array sstags, the dictionaries from Ciaramita and Altum (2006), containing 

the {nouns|verbs|adjs|advs}.gaz files. Each line is read from each line, splitting into tabs, and taking the 

first two as the lemma and the lexicographer file name. This array will be used to identify a complement 

and a governor lemma of the appropriate part of speech. This will be used in create_new_vert. 

1.9. Token (id, word, lemma, tag, depid, dep_lable) 

This class forms an instance of Token using its arguments to set the respective elements of the instance. 

The id member is set directly. All other members are set to the result of decoding the string according to 

utf-8. The word member may be modified if it is a double backquote, a double singlequote, or contains an 

ampersand. The same is done for the lemma. The tag member is set directly. The depid and dep_lable 

members are set directly. 

The lempos member is set based on a call to the member function make_lempos with lemma and tag as 

arguments. If tag is in u"CC", u"IN", u"JJ", u"JJR", u"JJS", u"NN", u"NNS", u"NNP", u"NNPS", u"VB", 

u"VBD", u"VBG", u"VBN", u"VBP", u"VBZ", the first character of the tag is appended to the lemma. If 

tag is one of "RB", "RBR", "RBS", an a is appended. If tag is none of these, x is appended. 

 

                                                           
8 http://www.clres.com/db/prepclas.php 

http://www.clres.com/db/prepclas.php

